
Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. H.C.A. van Tilborg

Copromotor:
dr. B.M.M. de Weger

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Jochemsz, Ellen

Cryptanalysis of RSA variants using small roots of polynomials / door Ellen Jochemsz. –
Eindhoven : Technische Universiteit Eindhoven, 2007.
Proefschrift. – ISBN 978-90-386-1080-1
NUR 919
Subject headings : cryptology
2000 Mathematics Subject Classification: 94A60, 12Y05, 11T71.

Printed by Printservice Technische Universiteit Eindhoven.
Cover: Historical lattices. Design by Verspaget & Bruinink.

Cryptanalysis of RSA variants

using small roots of polynomials

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 4 oktober 2007 om 16.00 uur

door

Ellen Jochemsz

geboren te Rijnsburg

Contents

1 Introduction 3

1.1 Cryptology, public key cryptography, and RSA 3

1.2 Overview of this work . 5

2 The RSA cryptosystem 9

2.1 Basics . 9

2.2 RSA variants . 10

2.3 Cryptanalysis . 15

3 Small roots of polynomials 21

3.1 Preliminaries . 21

3.2 Introduction to Coppersmith’s method . 24

3.3 A general strategy for choosing the shifts 30

3.3.1 Small modular roots . 31

3.3.2 Small integer roots . 39

3.4 Tabular overview . 44

3.5 Complexity of attacks using Coppersmith’s method 46

4 Partial key exposure attacks on RSA 47

4.1 Introduction . 47

4.2 Known attacks . 48

4.3 A new “2-dimensional” attack . 53

4.3.1 Description of the new attack . 53

4.3.2 Special cases: Wiener and Verheul/van Tilborg 57

4.3.3 Experiments for the new attack . 59

4.4 New attacks up to full size exponents . 60

4.4.1 Polynomials derived from the RSA key equation 62

4.4.2 Attacks for known MSBs and small d 63

4.4.3 Attacks for known MSBs and small e 67

4.4.4 Attack for known LSBs and small d 68

4.4.5 Experiments for the new attacks . 68

4.5 Tabular overview . 71

1

5 Attacks on RSA-CRT variants 73

5.1 Introduction . 73

5.2 Known attacks . 76

5.3 A new attack on CRT-Small-dp, dq . 82

5.3.1 A bound for a specific polynomial f with a small root 84

5.3.2 Description of the new attack . 85

5.3.3 Implementation of the new attack 87

5.3.4 Experiments for the new attack . 91

5.4 A new attack on CRT-Qiao&Lam . 95

5.4.1 A bound for a specific polynomial f with a small root 95

5.4.2 Description of the new attack . 96

5.4.3 Experiments for the new attack . 97

5.5 Tabular overview . 98

6 Attacks on Common Prime RSA 100

6.1 Introduction . 100

6.2 Known attacks . 100

6.3 A new attack on Common Prime RSA . 104

6.3.1 Description of the new attack . 105

6.3.2 Experiments for the new attack . 106

6.4 Tabular overview . 107

7 Conclusion & open questions 108

7.1 The security of RSA: Advice for implementors 108

7.2 Open questions . 110

Bibliography 116

Index 123

Samenvatting 125

Summary 127

Acknowledgments 129

Curriculum Vitae 131

2

1
Introduction

1.1 Cryptology, public key cryptography, and RSA

Cryptology , derived from the Greek word kryptos for “hidden” and logos for “word”, is
often defined as the study of secret writing. It is divided into two branches.

The first is cryptography which is mainly concerned with designing cryptosystems. In
history, cryptosystems were simply algorithms to encipher and decipher a message. In the
current days where computers are a major part of our industry, cryptography also provides
solutions to many other security issues, such as authentication (for instance via digital
signatures). A quote by the famous cryptographer Ron Rivest is that “cryptography is
about communication in the presence of adversaries”.

The second branch, cryptanalysis, deals with codebreaking, where an adversary tries
to decrypt intercepted ciphertexts, or tries to find out who sent an anonymous message,
or tries to pose as someone else, or tries to do any other thing that violates the goal of a
cryptosystem. Some might say that cryptanalysis is the “dark side” of cryptology, while
others believe that researchers should try their best in breaking existing cryptosystems to
prevent the real villains from finding the attacks first.

Methods to send messages in a secret way have been around since people started writing,
and at the same time, people have been interested in deciphering secret messages. The
development of cryptography and cryptanalysis go hand in hand, and many times the
course of history has been influenced by whether a cryptosystem used by a specific person
or country was breakable or not [41, 67].

Up to 1976, almost all cryptosystems required that the sender and receiver shared
a secret key. In these so-called symmetric cryptosystems, a message is encrypted by an
encryption algorithm, which has both the message and the secret key as input. The output
is a ciphertext, that can be decrypted by a decryption algorithm, which has the ciphertext
and the same secret key as input.

In 1976, Whitfield Diffie and Martin Hellman introduced1 the concept of asymmetric
cryptography in their groundbreaking paper “New Directions in Cryptography” [23]. In

1In 1997 it became known that mathematicians of the British intelligence agency GCHQ had invented
asymmetric cryptography (James Ellis in 1970), a key exchange protocol analogous to Diffie and Hellman’s
(Malcolm Williamson in 1974) and an asymmetric cryptosystem analogous to RSA (Clifford Cocks in 1973).

3

Introduction 1.1 Cryptology, public key cryptography, and RSA

this paper a key exchange protocol is introduced, which can be used by two people to agree
on a common secret key over an insecure channel. The paper also inspired the crypto
community to look for an asymmetric cryptosystem. That is, an encryption algorithm
where the encryption key and the decryption key are not the same, and where the encryp-
tion key can be published without giving away the information needed for decryption. In
1978, Ron Rivest, Adi Shamir, and Len Adleman introduced the first asymmetric crypto-
system, the RSA scheme [64]. Almost thirty years after its introduction, RSA is still the
most used asymmetric cryptosystem in practice. The RSA scheme and its vulnerabilities
are the main topic of this thesis.

In the setup phase of the RSA scheme in its simplest form, a person (whom we shall call
Alice from here on) chooses two large prime numbers p and q and computes their product
N = pq. Moreover, she selects a pair of integers (e, d) such that

ed ≡ 1 mod φ(N),

where φ(N) := (p− 1)(q − 1) is Euler’s totient function. Alice publishes (N, e) and keeps
(p, q, d) private.

Another person (whom we shall call Bob) wishes to send a message m to Alice, where
m is represented as an element of Z∗N = (Z/NZ)∗. He knows e and N and can therefore
encrypt m by computing

c ≡ me mod N.

Bob sends the ciphertext c to Alice. Alice decrypts c by computing

cd ≡ med ≡ m1+kφ(N) ≡ m mod N.

The last equivalence, valid for all m that are coprime to N , is a result of Euler’s Theorem
(which in turn is a generalization of Fermat’s Little Theorem). One can see that indeed,
Alice recovers the message m using her secret decryption exponent d.

Since the introduction of RSA, it has become the most popular asymmetric crypto-
system, and therefore much research has been done on its vulnerabilities (see for in-
stance [8]). It is essential that the secret information (p, q, d) cannot be extracted efficiently
from the public information (N, e), since otherwise anyone could decrypt a message meant
for Alice. If the primes p and q are known, then φ(N) is known and it is easy to com-
pute d using the Extended Euclidean Algorithm. Therefore, it is crucial that factoring the
modulus N is hard, and many researchers are trying to factor large RSA moduli N . It is
not known if there exist integer factorization algorithms whose running time is polynomial
in the bitsize of N . Currently, the best factoring algorithm, the Number Field Sieve, has
running time subexponential in the bitsize of N .

However, we may be able to factor an RSA modulus N if we can use additional in-
formation. In this thesis, we focus on breaking RSA and RSA variants when an attacker
has some additional knowledge on the secret RSA parameters (p, q, d). For instance, an
attacker could know that d is not chosen randomly, but selected in a special way. Or an
attacker could know that there is a special relation between p and q. Such special design
criteria are not uncommon, since they can lead to a more efficient decryption or encryption.

4

Introduction 1.2 Overview of this work

Alternatively, an attacker could have obtained a part of the bits of the decryption exponent
d by using a so-called side channel attack . A side channel attack is a physical attack on
an RSA implementation, where an attacker tries to get information on d by connecting a
device to the computer or smartcard that is performing the RSA decryption (and measuring
the time it takes to run the decryption, or measuring the power consumption during the
decryption process).

The results in this thesis show that one must be very careful when using RSA or RSA
variants when the RSA parameters have special properties, or when part of the bits of d
have leaked. In essence, we show that in some of these variants, a multivariate polynomial
appears which has a small root. Finding this small root means that secret RSA parameters
of the system are fully exposed, and the factorization of N can be found.

This brings us to the theory (and practice) of finding small roots of polynomials. In
1996, Don Coppersmith [14, 15, 16] introduced methods of finding small modular roots x0 of
univariate polynomials fN(x) modulo some composite integer N , and finding small integer
roots (x0, y0) of bivariate integer polynomials f(x, y). For the polynomials that appear
in the cryptanalysis of RSA variants, we sometimes need extensions of Coppersmith’s
methods to more variables. These extensions are heuristic, in the sense that they rely
on an assumption, which turns out to work well in practice, but which must always be
tested for specific attack scenarios. The methods enable us to analyze for each polynomial
that occurs in an RSA variant, how small the root should be such that it can be found in
time polynomial in the bitsize of N . In this way, we can see in which cases the additional
information that the attacker has is enough to obtain the factorization of N in polynomial
time.

1.2 Overview of this work

Now that we have introduced the topic of the thesis, we are ready to state our main goal,
and give an overview of the thesis and our contributions.

Research goal:

We aim to design new attacks on RSA and RSA variants, which allow us to
factor the RSA modulus N in time polynomial in the bitsize of N .

In the design of these new attacks, the assumption is made that an attacker
has some information on the secret RSA parameters of the system, either
obtained from e.g. a side channel attack, or by knowing special design criteria
of the RSA variant.

5

Introduction 1.2 Overview of this work

Motivation of the research:

Let us briefly discuss the motivation for exploring attacks on RSA in which an attacker
has some extra information on the RSA parameters.

As we shall see later, side channel attacks are a serious threat to RSA implementa-
tions. These attacks exploit physical characteristics such as the running time or the power
consumption of a decryption procedure, to draw conclusions about the bits of the secret
key d. This may lead to partial leakage of the bits of d, and raises the question whether
or not this information is enough for an attacker to recover the rest of d.

The other attacks that we deal with, namely attacks on RSA variants that have special
design criteria, are motivated by the various proposals to speed up RSA. Since RSA is a
popular system, researchers are always interested in achieving a more efficient encryption
or decryption procedure by choosing the RSA parameters in a special way.

Organization of this thesis and our main contributions:

Chapter 2: The RSA cryptosystem

In Chapter 2, we outline the RSA scheme and variants on RSA, and introduce different
ways to mount attacks. Moreover, we show that in some of the cryptanalytic results on
RSA, polynomials with small roots are used. We end this chapter by introducing two
important attacks on RSA with small decryption exponent d, by Wiener [75] and Boneh
and Durfee [10].

Chapter 3: Small roots of polynomials

Since polynomials with small roots play an important role in the cryptanalysis of RSA,
we deal with this topic in a separate chapter (Chapter 3). We introduce Coppersmith’s
methods of finding small modular roots of univariate polynomials, and of finding small
integer roots of bivariate polynomials [14, 15, 16]. We explain how the methods can be
extended to more variables, although the techniques will become heuristic in these cases.
We will also use the works of Howgrave-Graham [35] and Coron [18], who revisited Copper-
smith’s methods for small modular roots and small integer roots respectively.

One difficulty in applying a Coppersmith method to a new multivariate polynomial f
that appears in cryptanalysis, is the choice of the so-called shift polynomials. This choice
depends on the monomials that appear in f . We present a general strategy that can be
followed, which prescribes which shift polynomials can be used. The general strategy can
also be used to give an easy answer to the question: How small should the root be such
that it can be found in polynomial time? For small integer roots, this strategy is a gene-
ralization of a strategy by Blömer and May for bivariate polynomials [7].

Parts of this chapter are based on [37], presented at Asiacrypt 2006, which is joint work
with Alexander May.

6

Introduction 1.2 Overview of this work

Chapter 4: Partial key exposure attacks on RSA

In Chapter 4, we introduce the concept of partial key exposure, which is the situation that
an attacker has obtained a part of the bits of the secret exponent d. We describe the known
partial key exposure attacks on RSA by Boneh, Durfee, and Frankel [12] and by Blömer
and May [6], and present new ones.

The first new attack deals with the case that d is chosen to be small. In the nineties,
it was shown by Wiener [75] that a private exponent d can be found if d < N

1
4 . Verheul

and van Tilborg [72] show that Wiener’s attack can be extended slightly to d < N
1
4
+ε for

a small ε, but at the cost of a workload of O(N2ε). Our new partial key exposure attack
uses a 2-dimensional lattice and is an extension of the attacks by Wiener and Verheul/van
Tilborg to the case of partial key exposure.

The attacks that we describe next show that partial key exposure attacks on RSA exist
whenever either d or e is chosen to be significantly smaller than φ(N).

Parts of this chapter are based on [36], presented at ISC 2006, which is joint work with
Benne de Weger. Other parts of the chapter are based on [25], presented at Eurocrypt 2005,
a joint paper with Matthias Ernst, Alexander May, and Benne de Weger.

Chapter 5: Attacks on RSA-CRT variants

The most popular variant of RSA is called RSA-CRT, which only involves a small change
in the decryption process. Instead of computing cd mod N directly, one could use so-called
CRT-exponents dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1). Then by combining

mp ≡ cdp mod p and mq ≡ cdq mod q

using the Chinese Remainder Theorem (CRT), one can also find the original message m.
A gain in efficiency is caused by the fact that the private CRT-exponents dp and dq (and
all the other numbers that occur in the process of the modular exponentiation) are the size
of p and q instead of the size of N .

Moreover, it may be tempting to choose dp and dq significantly smaller than p and q
to obtain an even faster decryption phase. Wiener suggested to use these small private
CRT-exponents instead of small private exponents in the paper where he attacked d < N

1
4 .

It has been an open question since whether or not there exist polynomial time attacks on
RSA-CRT with small CRT-exponents. In Chapter 5, we answer this question and show
that there is an attack on RSA-CRT if dp and dq are smaller than N0.073.

In a variant on RSA-CRT it is proposed to choose dq = dp − 2, such that a user only
has to store one of the private CRT-exponents. We show that this is unsafe if dp < N0.099.

These new attacks are an addition to the known attacks on RSA-CRT variants by
May [52], Bleichenbacher and May [4], Galbraith, Heneghan, and McKee [27] and Sun,
Hinek, and Wu [69].

Parts of this chapter are based on [38], presented at Crypto 2007, others are based on [37],
presented at Asiacrypt 2006. Both papers are joint work with Alexander May.

7

Introduction 1.2 Overview of this work

Chapter 6: Attacks on Common Prime RSA

Another variant on RSA, called Common Prime RSA, is the topic of Chapter 6. In this
variant, the primes p and q satisfy a special relation, which causes Wiener’s attack to work
less well. Therefore, by choosing the primes in this special way, one is able to use a de-
cryption exponent d smaller than N

1
4 . We discuss the known attacks collected in a paper

by Hinek [32]. We show a new attack on Common Prime RSA which significantly restricts
the number of safe choices for d.

Parts of this chapter are based on [37], presented at Asiacrypt 2006, which is joint work
with Alexander May.

Chapter 7: Conclusions & open questions

Finally, we conclude with an overview of the security of RSA and its variants, and provide
guidelines for designers and implementors of new RSA variants. Moreover, we address a
number of open questions, either related to finding small roots of polynomials, or to RSA
cryptanalysis.

8

2
The RSA cryptosystem

In this chapter, we introduce the RSA cryptosystem and some variants on it. Most of
these variants were proposed in attempts to speed up either the encryption phase or the
decryption phase of RSA. We describe the various ways to attack RSA schemes in the
section on cryptanalysis of RSA.

2.1 Basics

The standard RSA scheme [64] is built up as follows.
Let n be a security parameter, usually called the modulus length. Let p and q be two

randomly generated primes of about 1
2
n bits. Take N := pq to be the n-bit RSA modulus.

Typically, n = 1024, although n = 2048 is used in practice by more conservative users.
Next, one generates two integers e and d which are each other’s inverse modulo φ(N) =

(p − 1)(q − 1). This can be done by choosing either e or d at random, coprime to φ(N),
and computing the other integer using the Extended Euclidean Algorithm. This algorithm,
when performed on an integer pair (a1, a2), finds integers b1 and b2 such that

a1b1 + a2b2 = gcd(a1, a2).

So, when for instance (e, φ(N)) is taken as an input, one finds b1 and b2 such that

eb1 + φ(N)b2 = 1.

Take b1 = d and b2 = −k. Then an integer pair (e, d) can be found such that

ed = 1 + kφ(N).

When Alice has generated the parameters of her RSA system, then the public key crypto-
system works as follows. Alice publishes (e,N) and keeps (p, q, d) secret. If Bob wants to
send a message to Alice, he represents it as an integer m ∈ (1, N) that is coprime to N .
He then encrypts m by computing

c ≡ me mod N,

which is possible since he knows both e and N .

9

The RSA cryptosystem 2.2 RSA variants

Alice can decrypt the message by computing

cd ≡ med ≡ m1+kφ(N) ≡ m mod N.

Aside from being an encryption scheme, RSA can also be used as a digital signature
scheme. This is important when authentication of the sender of a message is requested.
Suppose Alice wants to prove that a certain message is written by her. She can then
compute

s ≡ md mod N

using her private exponent d, and send the signature s, together with the message m.
Then, anyone can compute

se ≡ med ≡ m1+kφ(N) ≡ m mod N,

and check if the output of this computation corresponds to the message m accompanying
the signature. This is called the verification of the signature s.

In practice, it is often not the message itself that gets signed, but a condensed version
of m, the outcome of a hash function H when performed on m. Naturally, anyone can verify
that H(m) = se mod N is the hash value of the corresponding m if the hash function is
publicly known.

2.2 RSA variants

Since its introduction in 1978, RSA has become a widely used cryptosystem. There-
fore, many people have tried to speed up the process of encrypting/verifying or decrypt-
ing/signing a message.

Let us first examine the efficiency of these processes in the case of standard RSA.
A standard way to perform this modular exponentiation is by the ‘Square-and-Multiply
Method ’, also known as the ‘Repeated Squaring Method’. In order to compute me mod N ,
one first looks at the bit representation of e, that is (en−1, . . . , e0), for e =

∑n−1
i=0 ei2

i. So,

me = me0+2(e1+2(e2+2(e3+...))).

One can compute me mod N in an iterative way by setting initial values x = 1, y = m,
and for i = 0, 1, . . . , n− 1:

• if ei = 1 then put x = x · y mod N ,

• if i < n− 1, then put y = y2 mod N .

After these iterations, output x = me mod N . In total, this so-called ‘right-to-left’ method
involves as many squarings as the bitsize of e and as many multiplications as there are
ones in the bit representation of e.

10

The RSA cryptosystem 2.2 RSA variants

Each multiplication or squaring can be performed in time c ·n2, where c is a constant. We
conclude that the total method takes at most time 2 · bitsize(e) · cn2 ≤ 2cn3. Equivalently,
the time for the decryption process is at most 2 · bitsize(d) · cn2 ≤ 2cn3.

Next, we will describe a number of proposed variants on RSA. Most of them focus on
speeding up either the encryption (or signature verification) phase or the decryption (or
signing) phase of the cryptosystem.

RSA with small public exponent e (“Small-e”):

RSA with a small encryption exponent e occurs often in practice. Since the encryption
exponent is public, one can choose it to be for instance e = 3 or e = 216 + 1, which are the
most common choices. For e = 3, only two multiplications and one squaring are required
for the exponentiation in the encryption phase. For e = 216 + 1, the number of multiplica-
tions and squarings are 2 and 16 respectively. In the case of RSA-Small-e, a small e is first
fixed in the key generation (after the random choices of p and q have been made). Then,
the Extended Euclidean Algorithm computes the corresponding d, which will be ‘full size’
(that is, about the same bitsize as φ(N)) in general.

RSA with small private exponent d (“Small-d”):

If a fast decryption/signing phase is needed, for instance on constrained devices like smart-
cards, one could use RSA with a small private exponent d. In that case, first d can be
chosen to be of a certain size, after which the corresponding e is determined by the Ex-
tended Euclidean Algorithm. In general, e will be ‘full size’ in this case. As we shall see in
the next section on cryptanalysis of RSA, Wiener [75] showed in 1990 that there are poly-
nomial time attacks on RSA with small d. Namely, he showed that d can be found in time
polynomial in n = bitsize(N) if d < N

1
4 . Boneh and Durfee extended this attack bound to

d < N0.292 in 2000 [10]. With n = 1024, this is already a much stronger attack than the
brute force attack and meet-in-the-middle attack that will be described in Section 2.3.

Standard RSA-CRT (“CRT-Standard”) :

A standard way to speed up RSA decryption, as proposed by Quisquater and Couvreur [61],
is by splitting up the exponentiation in the decryption phase and using the Chinese Re-
mainder Theorem. That theorem says that if two integers r and s are coprime, and we
know integers a1, a2 such that

x ≡ a1 mod r, x ≡ a2 mod s,

then the unique x < rs that satisfies both equations can be constructed efficiently.
Instead of computing cd mod N directly, one could use so-called private CRT-exponents

dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1). Then by combining

mp ≡ cdp mod p and mq ≡ cdq mod q

using the Chinese Remainder Theorem, one can also find the original message m.

11

The RSA cryptosystem 2.2 RSA variants

Since bitsize(dp) = bitsize(dq) = 1
2
n, each of these exponentiations will involve 1

2
n squarings

and at most 1
2
n exponentiations, so the total number of squarings and multiplications stays

the same as in the standard case (but the operands are shorter). A squaring or multiplica-
tion modulo p takes time at most c ·(bitsize(p))2 = 1

4
cn2. Therefore, if one neglects the time

used for the Chinese Remainder Theorem, then it can be concluded that decryption with
the Quisquater/Couvreur method is four times faster than the decryption in standard RSA.

RSA-CRT with small public exponent e (“CRT-Small-e”) :

As in standard RSA, it is possible to choose a small e, after which the Extended Euclidean
Algorithm finds the corresponding d, which in turn is split up in dp and dq. This is pro-
bably the most popular variant of RSA in practice. If one chooses p and q at random, and
then a small e, then the private CRT-exponents dp and dq will be about as long as p and
q in general.

RSA-CRT with small private CRT-exponents dp, dq (“CRT-Small-dp, dq”) :

Similarly, it is also possible to choose small private CRT-exponents dp and dq. After fixing
dp and dq, one needs to compute d smaller than φ(N) = (p− 1)(q − 1) such that

d ≡ dp mod (p− 1) and d ≡ dq mod (q − 1).

Since p − 1 and q − 1 are not coprime, one cannot use the Chinese Remainder Theorem
directly. However, one could do the following.

Pick random primes p, q of the same bitlength such that gcd(p− 1, q− 1) = 2. Choose
random odd integers dp, dq of the same small size, that is dp, dq < Nβ for some β ∈ (0, 1

2
).

Use the Chinese Remainder Theorem to compute the unique x < (p−1)(q−1)
4

that satisfies

x ≡ dp − 1

2
mod

p− 1

2
and x ≡ dq − 1

2
mod

q − 1

2
.

Then for d = 2x + 1, it holds that d ≡ dp mod (p − 1) and d ≡ dq mod (q − 1). From
this d, one can compute the corresponding e as usual.

Wiener suggested to use these small private CRT-exponents instead of small private ex-
ponents in the paper where he attacked d < N

1
4 . It has been an open question since whether

or not there exist polynomial time attacks on RSA-CRT with small CRT-exponents.

RSA-CRT with unbalanced primes (“CRT-UnbalancedPrimes”) :

In a study of RSA-CRT cases that can be broken, May designed the concept of RSA-CRT
with unbalanced primes [52]. We know that in RSA-CRT, the equations

edp ≡ 1 mod (p− 1), edq ≡ 1 mod (q − 1)

hold. Suppose that q = Nβ for some β ∈ (0, 1
2
) is the smaller of the two prime factors

of N . This implies that the exponentiation modulo q is relatively fast. Now one could also
make the exponentiation modulo p fast by choosing dp to be small. This is basically the
variant that May proposes:

12

The RSA cryptosystem 2.2 RSA variants

• have a modulus that is the product of unbalanced primes p, q with p > q,

• choose dq randomly (so dq will be about as large as the ‘small’ prime q), and

• choose a small dp to speed up the exponentiation modulo the ‘large’ prime p.

RSA-CRT with small e and small dp and dq (“CRT-BalancedExponents”) :

In 2005, two independent papers [28, 70] proposed the same RSA variant, namely one that
uses RSA-CRT in which both e and dp and dq are smaller than standard. Let us show how
this can be achieved in the key generation phase. We want e, dp, dq, p, q, kp, kq such that

edp = 1 + kp(p− 1), edq = 1 + kq(q − 1),

with e of bitsize αn, dp and dq of bitsize βn, and p and q of bitsize 1
2
n. Here, α ∈ (0, 1)

and β ∈ (0, 1
2
). By this construction, kp and kq are of bitsize (α + β − 1

2
)n.

First, one chooses random dp, dq of the right bitsize, and kp, kq of the right bitsize
satisfying gcd(dp, kp) = gcd(dq, kq) = gcd(kp, kq) = 1. Next, one computes e′ using CRT
such that

e′ ≡ d−1
p mod kp and e′ ≡ d−1

q mod kq.

Since e′ is now smaller than kpkq which is (2α+2β−1)n bits, compute e := e′+ c ·kpkq for

some c of bitsize (1−α−2β)n. Finally, put p := edp−1

kp
and q := edq−1

kq
, and check if p and q

are both prime. If not, repeat the whole procedure until the p and q that are obtained are
both prime.

Note that c must be positive, so it is needed that α < 1 − 2β. This key generation
algorithm is a slight variation to the one proposed by Galbraith/Heneghan/McKee [28]. In
their algorithm, they first choose e, kp, and kq, and then compute dp and dq as the inverses
of e mod kp and mod kq. This requires dp > kp and dq > kq, and thus α < 1

2
, which is

quite restrictive. However, if α < 1
2
, then the method of [28] should be preferred, since one

can generate p and q separately, and the method does not rely on two integers that have
to be prime at the same time.

The key thing to note in the generation of these balanced exponents is the fact that p
and q are generated last (and then tested for primality). Hence, the modulus N is a product
of two special primes instead of two randomly chosen ones, and therefore the number of
possible N is less than usual, but it is unknown whether this can be exploited.

RSA-CRT with small difference dp − dq (“CRT-Qiao&Lam”) :

In a proposal to save on both memory and decryption time on constrained devices like
smartcards, Qiao and Lam [60] proposed to use RSA-CRT with small dp, and to use
dq = dp− 2. In this way, one profits from the fast decryption method of CRT-Small-dp, dq,
while one has to store only one of the two private CRT-exponents.

13

The RSA cryptosystem 2.2 RSA variants

RSA with special p, q (“Small Prime Difference”, “Common Prime”, etc.):

Some settings of RSA have primes p and q that are generated in a special (non-random)
way, either because of a faulty implementation, or on purpose. Examples include:

• A small prime difference p− q:
It is known that it is unsafe to use primes with a small prime difference. Besides
Fermat’s factoring attack (see for instance [74]), there are attacks on the RSA setting
with small d and a small prime difference by de Weger [74].

• Primes p, q such that gcd(p− 1, q − 1) = 2g, for g a large prime:
As we shall see in Chapter 6, the attacks by Wiener and Boneh/Durfee on small d
work less well for this variant called Common Prime RSA. Therefore, it might be
possible to use a d < N

1
4 if g, the prime factor that p − 1 and q − 1 are sharing, is

large enough (though not too large, to avoid other attacks).

• Primes p and q that share a block of least significant bits:
As we shall see in Chapter 4, this variant makes a partial key exposure attack by
Boneh, Durfee, and Frankel harder to perform, and was therefore proposed as an
interesting RSA variant by Steinfeld and Zheng [68].

• Partial knowledge of the primes p and q:
A consequence of the variant by Steinfeld and Zheng that we have just sketched
is that an attacker can find the least significant bits that p and q share. In any
variant where an attacker knows a set of either most significant bits (MSBs) or least
significant bits (LSBs) of one of the secret primes p and q, one must beware of an
important result by Coppersmith [16]. This result states that N can be factored

efficiently if the known MSB or LSB part of p is at least as big as N
1
4 . This result

will be discussed in Section 4 (in Theorem 4.1), since it is also the basis of the first
partial key exposure attacks on RSA by Boneh, Durfee, and Frankel [12].

RSA with moduli N = p1 · . . . · pr or N = prq (“Multi-prime”/“Takagi”):

We have already mentioned that the decryption/signing process in RSA can be made more
efficient by performing exponentiations modulo the prime factors of N , and then combining
these with the Chinese Remainder Theorem. It follows easily that using RSA with more,
and smaller prime factors should improve the efficiency of this decryption phase even more.

Therefore, RSA variants have been proposed that use N = p1 · . . . · pr, where the pi are
distinct primes of equal bitsize, or N = prq, for primes p and q of equal bitsize and r a
small integer. The first variant is called “Multi-prime RSA”, the second “Takagi’s RSA”
(also known as “Multi-power RSA”) since it was proposed by Takagi [71]. Obviously, one
necessary (though not sufficient) condition is that the prime factors are large enough to
avoid attacks using the factorization methods.

14

The RSA cryptosystem 2.3 Cryptanalysis

2.3 Cryptanalysis

As there are many different ways to attack RSA, we divide the attacks into the following
categories:

1. Factoring N :
Given an RSA modulus N of bitsize n, the goal is to find its prime factorization.
In these attacks, an adversary gets no public exponent e, no ciphertext c, only the
composite integer N . Currently, the best (general) factorization method, the Number
Field Sieve [47], has a number of bit operations that is bounded by

exp
(
(1.902 + o(1)) ln(N)

1
3 (ln(ln(N)))

2
3

)

for N →∞. In special cases, namely when one is looking for a small prime factor of
a number N , the Elliptic Curve Method (ECM) [49] could be used. Currently, the
largest factor found by the ECM has 222 bits. We refer to [46] for more details on
integer factorization.

2. Brute force and meet-in-the-middle attacks on d or dp, dq:
The brute force and meet-in-the-middle attacks on d (or, in the RSA-CRT case, dp

and dq) show that one should choose these secret values large enough such that an
attacker is not able to find them by simply trying all possibilities. If a message m is
very small, then one might try to encrypt all possible plaintexts m with the public
exponent e, and check if the result is an intercepted ciphertext. Similarly, if one knows
that d is chosen small, one might try all possibilities for d to decrypt the ciphertext.
All of these attacks are so-called brute force attacks, and are simply attacks using
exhaustive search. To say that a certain parameter choice is safe against brute force
attacks, we need to quantify the maximal amount of operations that an attacker is
able to perform. A usual choice for this is 280 (see for instance report on the hardness
of computational problems in cryptography [24], where it is said that an exhaustive
search of 80 bits is on the edge of what is not doable today). Hence, all secret RSA
parameters should be at least 80 bits long to avoid brute force attacks.

A more advanced category of attacks is called meet-in-the-middle attacks. In these
attacks, there is a trade-off between storage and running time. For a detailed descrip-
tion of meet-in-the middle attacks on RSA and RSA-CRT, we refer to [51]. Here, we
show how it works on a small d. Given a message-ciphertext pair (m, c), such that
c ≡ me mod N , assume that e’s inverse d has an upper bound D. Then, d is built
up as

d = d
√

De · d0 + d1.

Make a sorted list of all couples (d0, c
d√De·d0) for d0 <

√
D. For d1 running from 0 to√

D, compute m · (c−1)d1 , and check if (d0,m · (c−1)d1) in the list. If so, then output
d = d√De · d0 + d1. Hence, at the cost of a list with about

√
d entries, the number

of tries to find d can be reduced to about
√

d.

15

The RSA cryptosystem 2.3 Cryptanalysis

3. Attacks that involve plaintext-ciphertext pairs (m, c):
These attacks use the knowledge that ciphertexts c are computed as the e-th power of
an unknown message m modulo N . Therefore, they fall into the category of so-called
“message recovery attacks”, instead of the “key-recovery attacks” that are the main
topic of this thesis. Examples include

• H̊astad attack [31]: It is unsafe to send the same message m to more recipients
that all use RSA with e = 3 (although they have different moduli).

• Franklin-Reiter attack [17]: With e = 3, it is unsafe to send related messages
m1, m2, with m1 ≡ f(m2) mod N for some linear polynomial f .

• Coppersmith short pad attack [16]: Suppose two messages m1 and m2 are
essentially the same message m, but concatenated with different (unknown)
paddings r1 and r2. If the paddings are at most b = bn/e2c bits long, and the
original message m is at most n− b bits, then an attacker can find m from the
ciphertexts, e and N .

All of the above attacks are described in Boneh’s survey paper [8].

4. Implementation attacks :
Even if a cryptosystem is flawless in theory, vulnerabilities can arise when it is im-
plemented.

• Side channel attacks: Side channel attacks take advantage of implementation-
specific characteristics to recover the secret exponent d that is involved in the
computation of a decryption or signature. This characteristic information can
be extracted by timing the decryption/signing process, by examining the power
consumption of the process, etc. In the case of RSA, this could mean that
an attacker examines the power consumption of a device that is applying the
Square-and-Multiply Method for the decryption, and tries to distinguish per
iteration if a squaring and a multiplication occur (di = 1) or if only a squaring
occurs (di = 0).

These types of attacks have become an important part of the research on RSA
security in practice, since Kocher introduced his timing attacks [42] in 1996.
Other main results in the area include the introduction of simple and differential
power analysis [43] by Kocher, Jaffe, and Jun, and the introduction of attacking
implementations by inducing faults in specific iterations by Boneh, DeMillo, and
Lipton [9]. For an overview on side channel attacks, we refer to [62, 39]. For
the motivation of the research in Chapter 4, on partial key exposure attacks, it
is important to remark that some side channel attacks are able to reveal only a
part of the secret exponent d [22].

16

The RSA cryptosystem 2.3 Cryptanalysis

• Bleichenbacher’s first attack on PKCS-1: In an old version of PKCS-1 (Public
Key Cryptography Standard 1), an encryption of a message m was in fact an
encryption of the following data string:

02 random padding 00 m

In [3], Bleichenbacher shows that this causes problems when a protocol de-
crypting a ciphertext c outputs an error message when the initial block does not
consist of the bytes 0 and 2. Basically, an attacker can intercept a ciphertext c,
and send c′ ≡ rc mod N to be decrypted, for some random r.

Now the attacker will learn whether or not the 16 most significant bits are equal
to 02. Hence, the attacker has a method that tells him if the decryption of a
chosen ciphertext has the correct initial block. Bleichenbacher shows that this
is enough to decrypt c.

• Bleichenbacher’s second attack on PKCS-1: At the rump session of Crypto’06,
Bleichenbacher showed another attack on an implementation of PKCS-1, which
shows that in some cases, an RSA signature can be forged if a public exponent
e = 3 is used. In order for an RSA signature to be accepted, it must look like

standard PKCS-1 padding bytes in ASN.1 format hash of the signed data

after the cube root of the signature is taken. The second block indicates which
hash algorithm is used, and how long the hash value is. Now the attack applies
to implementations of this signature verification that fail to check if there are
bits in the data string after the hash. If one can submit a signature of which
the cube root is

standard PKCS-1 padding bytes in ASN.1 format hash extra bits

then the signature is accepted as valid. An attacker can choose the extra bits
freely in order to create a perfect cube.

5. Factoring N with extra information on the RSA parameters :
These attacks are the main topic of this thesis. We have seen in the previous section
that many RSA variants have special design criteria, that can help an adversary
perform an attack. Also, as a result of the side channel attacks mentioned above, it
is possible that an adversary has learned a part of the bits of d. Then, we could ask
in which cases this so-called partial key exposure is enough to retrieve the rest of d.
As opposed to the attacks in category 2 of this list, we do not use encryptions c of
messages m. Instead, we focus on the known relations between the RSA parameters,
such as the so-called RSA key equation

ed = 1 + kφ(N), or equivalently: ed = 1 + k(N + 1− (p + q)).

17

The RSA cryptosystem 2.3 Cryptanalysis

In the chapters that follow, many known attacks will be described on the RSA variants,
preceding the description of the new attacks that we have found on these variants. The
new attacks include partial key exposure attacks on RSA-Small-e and RSA-Small-d, the
first polynomial time attack on RSA-CRT-Small-dp, dq, and new attacks on RSA-CRT-
Qiao&Lam and Common Prime RSA.

Since this work does not contain new attacks on RSA with small prime difference,
Multi-prime RSA or Takagi’s RSA, we refer to [74], [33], and [13, 55] respectively for
recent attacks on these variants.

We now proceed by introducing the two most important known attacks in this area,
namely the attacks by Wiener [75] and Boneh and Durfee [10] on RSA-Small-d.

Wiener’s Attack:

In 1990, Wiener showed the following result.

Theorem 2.1 (Wiener, [75])

Let N = pq be an RSA modulus, with q < p < 2q, and let d < 1
3
N

1
4 . Given N , and e such

that ed = 1 mod φ(N), one can recover d in time polynomial in the bitsize of N .

Proof.
There exists an integer k such that

ed = 1 + kφ(N).

Therefore,

e

φ(N)
− k

d
=

1

dφ(N)
,

which means that k
d

is a good approximation of e
φ(N)

. Although the value of φ(N) is
unknown, it is known that

φ(N) = (p− 1)(q − 1) = N + 1− (p + q), so |N − φ(N)| < 3N
1
2 .

Therefore, one would like to find k
d

as an approximation of the known fraction e
N

. Then,

∣∣∣∣
e

N
− k

d

∣∣∣∣ =

∣∣∣∣
ed− kN

dN

∣∣∣∣ =

∣∣∣∣
(ed− kφ(N)) + k(φ(N)−N)

dN

∣∣∣∣ =

∣∣∣∣
1− k(N − φ(N))

dN

∣∣∣∣

≤
∣∣∣∣∣
3kN

1
2

dN

∣∣∣∣∣ =

∣∣∣∣
3k

dN
1
2

∣∣∣∣ .

Since kφ(N) < ed and e < φ(N), it follows that k < d < 1
3
N

1
4 . So,

∣∣∣∣
e

N
− k

d

∣∣∣∣ ≤
∣∣∣∣

3k

dN
1
2

∣∣∣∣ <

∣∣∣∣
1

dN
1
4

∣∣∣∣ <
1

3d2
.

18

The RSA cryptosystem 2.3 Cryptanalysis

At this point, we need to recall some facts from the theory of continued fractions. The
continued fraction representation of a real number x is [a0, a1, . . .] for

x = a0 +
1

a1 + 1
a2+...

.

The fraction

pi

qi

= [a0, . . . , ai] = a0 +
1

a1 + 1
a2+ 1

...+ai

is called the ith convergent of x.
A classical theorem by Legendre [45] (for a recent reference, see [30, Theorem 184])

states that all fractions a
b

such that

∣∣∣x− a

b

∣∣∣ <
1

2b2

are obtained as convergents of x. Since k and d are coprime, k
d

can be found as one of the
at most n = bitsize(N) convergents of e

N
.

2

In Section 1.1, we have mentioned that we focus on attacks on RSA which factor N in
polynomial time when we are given extra information on the secret parameters. However,
we have only shown so far that one can recover d in polynomial time. After applying
Wiener’s attack, finding the factorization of N is easy, since we know both d and k, so we
can find the correct value of φ(N) = N + 1− (p + q) after which we can solve p, q from

{
φ = N + 1− (p + q),
N = pq.

Suppose we could only retrieve d and not k in polynomial time. A proof of the following
theorem, stating that knowledge of d also allows one to factor N in polynomial time, can
be found in [8].

Theorem 2.2
Let N = pq be an RSA modulus. Suppose integers e, d > 1 are known such that ed ≡ 1
mod φ(N). Then N can be factored in probabilistic polynomial time.

Here, probabilistic polynomial time means that the method involves a random g ∈ Z∗N ,
and succeeds in finding the factorization of N (in polynomial time) with probability at
least 1

2
. If the factorization fails, one simply has to try other choices for g.

Recently, May showed that this equivalence of finding d and factoring N is deterministic
polynomial time for balanced primes [54], which was extended to the case of unbalanced
primes by Coron and May in [20].

19

The RSA cryptosystem 2.3 Cryptanalysis

Boneh/Durfee’s Attack:

Ten years after the publication of Wiener’s attack, Boneh and Durfee showed an improve-
ment on the attack bound to d < N0.292 [10].

Their method is not based on continued fractions, but is one of the first that is based
on the theory of finding small roots of polynomials by Coppersmith. This method involves
lattices and lattice basis reduction, and resultants or Gröbner bases. Often, the attacks
that use the method are not provable but heuristic, although the heuristic seems to perform
well in practice. Since Coppersmith’s work on finding small roots of polynomials is the
topic of the next chapter, we will treat Boneh and Durfee’s attack in detail later.

For now, we shall only show which polynomial with a small root appears in the attack
of Boneh and Durfee. It is derived directly from the RSA key equation, namely

ed = 1 + k(N − (p + q − 1)).

Suppose one looks at this equation modulo e, and replaces k and p+q−1 by the unknowns
x and y. Then, one would like to find the root (x0, y0) = (k, p + q − 1) of the polynomial
fe(x, y) = 1 + x(N − y) modulo e. The root can be considered ‘small’ since

|x0| = |k| < d = Nβ and |y0| = |p + q − 1| < 3N
1
2 .

How small roots like this one can be found by a Coppersmith method, will be explained in
the next chapter.

20

3
Small roots of polynomials

In this chapter, we introduce the tools to solve the problem of finding small roots. In this
thesis, ‘finding small roots’ means finding an explicit, numerical, and exact description of
all roots of a polynomial that are bounded in size by some upper bound.

We start by describing the necessary preliminaries on lattices. After that, we describe
Coppersmith’s methods of finding small modular roots and small integer roots of poly-
nomials. We end this chapter with a general strategy that can be applied on any given
polynomial.

Parts of this chapter (and most of all the new general strategy in Section 3.3) are based
on [37], which is joint work with Alexander May.

3.1 Preliminaries

Lattices:

Let b1,b2, . . . ,bω ∈ Rm be linearly independent (row) vectors, where m and ω are integers
such that m ≥ ω. A lattice L is described as the set of vectors in Rm that are integer linear
combinations of the basis vectors b1,b2, . . . ,bω. Formally,

L :=

{
v ∈ Rm

∣∣∣∣∣v =
ω∑

i=1

aibi, for ai ∈ Z
}

.

We usually say that L is the lattice spanned by the rows of the matrix

Γ =

b1
...

bω

 .

The dimension of L is dim(L) := ω, and we call L a full rank lattice if m = ω. If L has
full rank, then the determinant of L is det(L) := | det(Γ)|, and though there are infinitely
many bases possible, the determinant is always the same.

We are interested in finding a basis of small, so-called reduced basis vectors. A small, or
short, lattice vector is a vector v in L such that its Euclidean norm ‖v‖ is relatively small.

21

Small roots of polynomials 3.1 Preliminaries

The following theorem by Minkowski deals with the shortest nonzero vector in a lattice L.
For details on the theorem, one could look at the survey of Nguyen and Stern [59].

Theorem 3.1 (Minkowski, [57])

Every lattice L of dimension ω contains a nonzero vector v that satisfies ‖v‖ ≤ √
ω det(L)

1
ω .

Unfortunately, finding the shortest nonzero vector in a lattice is very hard in general.
However, we can use LLL reduction designed by Lenstra, Lenstra, and Lovász [48] to find
a whole basis of lattice vectors which are relatively small in norm.

The method of Lenstra, Lenstra, and Lovász is closely related to the Gram-Schmidt
procedure of computing an orthogonal basis of the same determinant. Given a set of inde-
pendent vectors {b1, . . . ,bω}, the Gram-Schmidt procedure constructs a set of orthogonal
vectors B∗ = {b∗1, . . . ,b∗ω}, such that

b∗i = bi −
i−1∑
j=1

µijb
∗
j , with µij =

〈bi,b
∗
j〉

‖b∗j‖2
.

For a (full rank) lattice L,

det(L) =
ω∏

i=1

‖b∗i ‖,

however B∗ is typically not a basis of the same lattice anymore, and therefore an adaptation
of the Gram-Schmidt procedure is needed.

When the LLL reduction algorithm is performed on an ω-dimensional lattice L, it
outputs (in time polynomial in ω and the bitsize of the entries of the basis matrix Γ) a
basis {r1, . . . , rω} which is LLL reduced. This means that, if the Gram-Schmidt procedure
is performed on the reduced basis, we get

||ri|| ≤ 2
j−1
2 ||r∗j ||, for 1 ≤ i ≤ j ≤ ω. (3.1)

It follows that
ω∏

i=1

||ri|| ≤ 2
ω(ω−1)

4 det(L).

Hence, if all reduced basis vectors would be approximately of equal length, then the norm
of every ri would be about the size of det(L)

1
ω . However, this is not always the case. A

general result on the size of the individual reduced basis vectors, of which a proof can be
found in [53], is stated in the following theorem.

Theorem 3.2
Let L be a lattice of dimension ω. The reduced basis vectors {r1, r2, . . . , rω} that the LLL
algorithm outputs satisfy

||r1|| ≤ ||r2|| ≤ . . . ≤ ||ri|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i for all 1 ≤ i ≤ ω.

22

Small roots of polynomials 3.1 Preliminaries

In the case that all reduced basis vectors are approximately of the same length, that is, if
there are no exceptionally small lattice vectors, then we call such a lattice balanced. Let
us formalize this property in the following assumption.

Assumption 3.3 (Balancedness of a lattice)

The reduced basis vectors of a lattice L have a norm of size det(L)
1
ω .

As noted, this assumption holds for most (random) lattices, but special cases of lattices
with ‘extremely small’ basis vectors certainly exist, and for these unbalanced lattices we
are restricted to the general result of Theorem 3.2.

Special case; 2-dimensional lattices:

We define a 2-dimensional lattice L as the set of all integer linear combinations of two
linearly independent basis vectors {b1,b2} (we represent all vectors as row vectors). To
find a reduced basis {r1, r2} one can use the Lagrange reduction algorithm [44] (for a more
recent reference, see for instance [65, Chapter 4]), which is simply a generalization of Eu-
clid’s algorithm. The reduced basis found by Lagrange’s algorithm is guaranteed to contain
the smallest nonzero vector of the lattice.

We occasionally use the following notation for size-computations in this thesis. With
u ≈ Nλ, we mean that u ‘has the size of’ Nλ, that is |u| = CuN

λ for some number Cu

that does not deviate much from 1 (relative to N). In other words, Cu ∈ [N−ε, N ε] for
some very small ε. Naturally, (v1, v2) ≈ (Nλ1 , Nλ2) is a short notation for v1 ≈ Nλ1 and
v2 ≈ Nλ2 .

When we reduce the basis {b1,b2} to {r1, r2}, with r1 the smaller reduced basis vector
and r2 the larger reduced basis vector, it follows from (3.1) that

||r1|| · ||r2|| ≤
√

2 · ||r∗1|| · ||r∗2|| =
√

2 det(L).

So, we assume ||r1|| ≈ a−1 det(L)
1
2 and ||r2|| ≈ a det(L)

1
2 for some a ≥ 1. Hence,

Γred =

(
r1

r2

)
=

(
r11 r12

r21 r22

)
≈ det(L)

1
2 ·

(
a−1 a−1

a a

)
.

If the two reduced basis vectors r1, r2 are ‘nearly equal’ in length, that is when a does
not deviate much from 1, then all elements of Γred are of size det(L)

1
2 . However, it is

also possible that there is one ‘extremely small’ basis vector, which makes the lattice
‘unbalanced’.

When dealing with 2-dimensional lattices, we sometimes make the assumption that the
lattice is ‘balanced’, which is true in most cases. If this assumption is made in a specific
attack scenario, then we test its validity in experiments.

Assumption 3.4 (Balancedness of 2-dimensional lattices)

The reduced basis vectors given by the rows of Γred have a norm of size det(L)
1
2 . In other

words, the parameter a that describes the unbalancedness of the lattice is near to 1.

23

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Figure 3.1: a ≈ 1 Figure 3.2: a À 1

3.2 Introduction to Coppersmith’s method

In [14, 15, 16], Coppersmith describes rigorous techniques to find small modular roots
of univariate polynomials and small integer roots of bivariate polynomials. The methods
extend to more variables, however, this makes the methods heuristical as we shall see later.

Let us start with some helpful notations. Let fN(x) :=
∑

i aix
i be a univariate poly-

nomial with coefficients ai ∈ ZN . Let f(x, y) :=
∑

i,j aijx
iyj be a bivariate polynomial

with coefficients aij ∈ Z. The terms xi of fN and xiyj of f with nonzero coefficients are
called monomials. The norm of a polynomial fN or f is defined to be the Euclidean norm
of the coefficient vector of the polynomial. Hence, ‖fN‖2 :=

∑
i a

2
i , and ‖f‖2 :=

∑
i,j a2

ij.
The definitions for multivariate fN and f are analogous, although we use the notation
fN(x1, . . . , xv) and f(x1, . . . , xv) if we have more than three variables.

We study the problems of

• finding a root x0 of fN(x) modulo N , where N has an unknown factorization and x0

is known to be small: we know an upper bound X such that |x0| < X,

• finding an integer root (x0, y0) of f(x, y), where (x0, y0) is known to be small: we
know upper bounds X, Y such that |x0| < X, |y0| < Y .

It is clear that in general, roots of fN(x) modulo N or integer roots of f(x, y) cannot always
be found in polynomial time. For instance, if the root m of fN(x) = xe− c could be found
in polynomial time, then one could efficiently decrypt RSA ciphertexts c. Equivalently, if
one could find the integer root (p, q) of f(x, y) = xy−N in polynomial time, then one could
factor efficiently. However, finding small roots may be possible in polynomial time, and
finding the maximal X for which this can be done for a specific polynomial fN(x) (or the
maximal X, Y for a polynomial f(x, y)) is the goal of the work originated by Coppersmith.

24

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Small modular roots of univariate polynomials fN(x):

The idea behind Coppersmith’s method for finding a small modular root x0 of a polynomial
fN(x) is to reduce this problem to finding the same small root x0 of a polynomial h(x)
over the integers.

To construct this polynomial h(x), we first fix an integer m and construct a set of
univariate polynomials gjk:

gjk(x) := xj(fN(x))kNm−k, for k = 0, . . . , m and some choice for j.

It is important to note that all gjk share the root x0 modulo Nm. Thus, an integer linear
combination h(x) of the different gjk’s also has the root x0 modulo Nm. Now suppose we
know that |h(x0)| < Nm. Then it follows that h(x) must have the root x0 over the integers.

Since an upper bound X is known for |x0|, the coefficients of the polynomial h(xX) :=∑
i hiX

ixi can be used as an indication for the size of the terms in h(x0).
To see under which conditions we can conclude that the polynomial h(x) has the root

x0 over the integers (instead of modulo Nm), we use a theorem by Howgrave-Graham, who
reformulated Coppersmith’s ideas of finding modular roots in [35].

Theorem 3.5 (Howgrave-Graham, [35])
Let h(x) ∈ Z[x] be an integer polynomial consisting of at most ω monomials. Suppose that

(1) h(x0) ≡ 0 mod R for some |x0| < X and some positive integer R, and

(2) ||h(xX)|| < R√
ω
.

Then h(x0) = 0 holds over the integers.

Proof.
Let h(x) :=

∑
i bix

i. Then,

|h(x0)| =
∣∣∣∣∣
∑

i

bix
i
0

∣∣∣∣∣ ≤
∑

i

|bix
i
0| ≤

∑
i

|biX
i|.

Now, since ‖h(xX)‖ is the Euclidean norm of the vector (b0, b1X, . . . , bnXn), it holds that

R√
ω

> ‖h(xX)‖ =

√∑
i

(biX i)2.

It can be concluded that

∑
i

|biX
i| ≤ √

ω ·
√∑

i

(biX i)2 =
√

ω · ‖h(xX)‖ < R.

It follows that |h(x0)| < R. But since h(x0) ≡ 0 mod R, it must hold that h(x0) = 0.
2

25

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Now suppose we can find a polynomial h(x) as an integer linear combination of gjk’s that
satisfies

‖h(xX)‖ <
Nm

√
ω

,

where ω is the number of monomials of h. Then Theorem 3.5 tells us that we can find the
root x0 by solving h(x) = 0 over the integers. This leaves us the problem of finding h.

To find a polynomial h(x) whose coefficients are small enough to satisfy Howgrave-
Graham’s bound, we use lattices and lattice basis reduction. We let the coefficient vectors
of the polynomials gjk(xX) be the basis of a lattice L. After applying LLL reduction to
the lattice basis of L, we obtain a set of small vectors that correspond to polynomials
r1(xX), . . . , rω(xX), where ω is the dimension of the lattice. If L has full rank, then the
ri have at most ω monomials. From Theorem 3.2, we know that

‖r1(xX)‖ ≤ 2
ω−1

4 det(L)
1
ω .

Thus, if 2
ω−1

4 det(L)
1
ω < Nm√

ω
holds, then the LLL reduction gives us a polynomial h(x) =

r1(x) which satisfies Howgrave-Graham’s bound.
It can be seen that, in order to satisfy the bound above, the main goal in choosing the

gjk is to keep the determinant of the lattice L low. Coppersmith described a way to choose
these so-called shift polynomials gjk for several polynomials fN(x). Since we describe a
general way of choosing the shift polynomials for multivariate polynomials fN(x1, . . . , xv)
in Section 3.3.1, we postpone the description of how to build the lattice L to that section.

We note that Coppersmith’s modular method for one variable is a provable method. As
we shall see next, it can be extended to the multivariate case, but only when we introduce
an assumption, which makes the method heuristic.

Small modular roots of multivariate polynomials fN(x1, . . . , xv) :

As Coppersmith remarked in his work [16], the method sketched above can be extended

to small roots (x
(0)
1 , . . . , x

(0)
v) of multivariate polynomials fN(x1, . . . , xv). Analogous to the

univariate method, one could construct a lattice L with shift polynomials

gi1...ivk(x1, . . . , xv) := xi1
1 · . . . · xiv

v (fN(x1, . . . , xv))
kNm−k,

for fixed m, k = 0, . . . , m and some choice of i1, . . . , iv.
From Theorem 3.2, we know that the first v reduced basis vectors r1, . . . , rv of the

lattice satisfy

||r1|| ≤ ||r2|| ≤ . . . ≤ ||rv|| ≤ 2
ω(ω−1)

4(ω+1−v) det(L)
1

ω+1−v .

A typical case is ‖ri‖ ≈ det(L)
1
ω , but if the lattice is unbalanced, we can only use the

bound above.
Theorem 3.5 can easily be adapted as follows for multivariate polynomials.

26

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Theorem 3.6 (Howgrave-Graham, [35])
Let h(x1, . . . , xv) ∈ Z[x1, . . . , xv] be an integer polynomial that consists of at most ω
monomials. Suppose that

(1) h(x
(0)
1 , . . . , x

(0)
v) ≡ 0 mod R for some |x(0)

1 | < X1, . . . , |x(0)
v | < Xv and some positive

integer R, and

(2) ||h(x1X1, . . . , xvXv)|| < R√
ω
.

Then h(x
(0)
1 , . . . , x

(0)
v) = 0 holds over the integers.

Therefore, we have that if

2
ω(ω−1)

4(ω+1−v) det(L)
1

ω+1−v <
Nm

√
ω

is satisfied, then we find v polynomials ri(x1, . . . , xv) that have the root (x
(0)
1 , . . . , x

(0)
v) over

the integers.

A common root of v polynomials in v variables can be extracted efficiently if the v poly-
nomials are algebraically independent . Polynomials r1, . . . , rv are said to be algebraically
independent if and only if P (r1, . . . , rv) = 0 implies P = 0 for a polynomial P defined
over Q[x1, . . . , xv]. A recent paper by Bauer and Joux [2] treats the independence issue in
Coppersmith methods in detail.

If our polynomials r1, . . . , rv are indeed independent, then we can find the common root
by using resultants (see [21, Section 3] for an introduction on the theory of resultants). For
our purpose, it is enough to know that a resultant r(x1, . . . , xv−1) = Resxv(r1, r2) of two
polynomials r1(x1, . . . , xv), r2(x1, . . . , xv) has the following properties.

• The resultant r(x1, . . . , xv−1) of r1 and r2 with respect to xv can be computed effi-
ciently as the determinant of a Sylvester matrix that consists of columns containing
shifted versions of the coefficient vectors of r1 and r2.

• If r1 and r2 share a root (y1, . . . , yv−1, yv) for some yv, then r = Resxv(r1, r2) has the
root (y1, . . . , yv−1). Hence, the resultant can be used to eliminate a variable xv.

• The resultant r(x1, . . . , xv−1) = 0 if and only if r1 and r2 share a common factor
which has a positive degree in xv. Thus, if r1 and r2 are algebraically dependent,
then the elimination fails because the resultant is the zero function.

Hence, the polynomials ri(x1, . . . , xv) are algebraically independent if and only if the
following scheme produces a common root:

res1 := Resxv(r1, r2), res2 := Resxv(r2, r3), . . . , resv−1 := Resxv(rv−1, rv),
resv := Resxv−1(res1, res2), . . . , res2v−3 := Resxv−1(resv−2, resv−1),

...
resend := Resx2(resend−2, resend−1).

27

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Since resend(x
(0)
1) = 0, we know we can find x

(0)
1 . The other entries of the root can be

found by back substitution.
We have sketched how Coppersmith’s method is applied to polynomials with more

variables, and we have encountered the following heuristic.

Assumption 3.7 (Independent ri in multivariate Coppersmith methods)
The polynomials ri that are derived from the reduced basis of the lattice in the Coppersmith
method are algebraically independent. Equivalently, the resultant computations of the ri

yield nonzero polynomials.

In the examples we have tested, this heuristic often works perfectly. However, one should
always perform experiments to check whether Assumption 3.7 holds in a specific attack
scenario where a Coppersmith method is used on a multivariate polynomial.

Small integer roots of bivariate polynomials f(x, y):

Coppersmith’s second method was meant for finding small integer roots. In the sketch
that we give in this section, we follow Coron’s reformulation of Coppersmith’s method [18].
Essentially, Coron picks a ‘suitable’ integer R and transforms the situation into finding a
small root modulo R, to which one can apply Howgrave-Graham’s lemma.

The main goal is to construct a polynomial h(x, y), which is independent from the
original polynomial f , and which shares the integer root (x0, y0) with f .

Before we introduce the method to obtain h, we need to make some definitions. Recall
that X and Y are the known upper bounds on |x0| and |y0|. Let W be the coefficient
of f(xX, yY) that is largest in absolute value. That is, if f(x, y) =

∑
i,j aijx

iyj then

W := maxi,j |aijX
iY j|. Let R := X l1Y l2W for some choice of l1, l2 that we specify later.

To obtain h we use the shift polynomials

gij(x, y) := xiyjf(x, y) · R

WX iY j
and g′ij(x, y) := xiyjR,

where the sets of combinations (i, j) for g and g′ are discussed in Section 3.3.2. In order
to let all gij be integer polynomials, l1 is defined as the largest degree of x and l2 as the
largest degree of y in these gij (given a choice of combinations (i, j) that are used).

Obviously, all polynomials gij and g′ij share the root (x0, y0) modulo R. We let the co-
efficient vectors of the polynomials gij(xX, yY) and g′ij(xX, yY) be the basis of a lattice L.
After applying LLL lattice basis reduction, we obtain a set of small vectors that correspond
to polynomials r1(xX), . . . , rω(xX), where ω is the dimension of the lattice. If L has full
rank, then the ri have at most ω monomials. From Theorem 3.2, we know that

‖r1(xX, yY)‖ ≤ 2
ω−1

4 det(L)
1
ω .

Thus, if 2
ω−1

4 det(L)
1
ω < R√

ω
holds, then the LLL reduction gives us a polynomial h(x, y) =

r1(x, y) which satisfies Howgrave-Graham’s bound. The choice of R ensures that h(x, y) is
independent of f . This is because h is divisible by X l1Y l2 .

28

Small roots of polynomials 3.2 Introduction to Coppersmith’s method

Theorem 3.8 (Coron, [18])
A multiple h(x, y) of f(x, y) that is divisible by X l1Y l2 has norm at least

2−(ρ+1)2+1X l1Y l2W,

where ρ is the maximum degree of the polynomials f, h in each variable separately.

Hence, if ||h(xX, yY)|| < 2−(ρ+1)2+1X l1Y l2W = 2−(ρ+1)2+1R, then h cannot be a multiple
of f . We can assume that f is irreducible, for otherwise, we could have made our problem
easier by looking at the roots of the factors of f (note that factoring a polynomial over Z
can be done efficiently, see for instance [73]). Therefore, h must be independent of f .
If we put the two bounds of this section next to each other as follows,

||h(xX, yY)|| ≤ 2
ω−1

4 det(L)
1
ω < R√

ω
(Howgrave-Graham’s bound)

||h(xX, yY)|| ≤ 2
ω−1

4 det(L)
1
ω < 2−(ρ+1)2+1R (independency bound)

then we see that the difference between them is only in the terms that do not depend on N .
In the analysis of the attacks that use Coppersmith methods, it is common to use an error
term ε for these terms, and check only if

det(L) < Rω−ε.

This explains the choice of R in Coron’s work, since it implies that any polynomial that
satisfies Howgrave-Graham’s bound, is automatically also independent of f . As we have
explained before, when we know that f(x, y) and h(x, y) are independent polynomials that
share a root, we can use a resultant to extract the root.

Note that Coppersmith’s method of finding integer roots of bivariate polynomials is a
provable method. As we shall see next, it can be extended to multivariate polynomials,
but only when we introduce an assumption, which makes the method heuristic.

Small integer roots of multivariate polynomials f(x1, . . . , xv):

As in the modular case, it was already known to Coppersmith that his method could
be extended to the case of multivariate polynomials, at the cost of becoming heuris-
tic. Analogously to the method for bivariate polynomials, we introduce an integer W
that is the coefficient of f(x1X1, . . . , xvXv) that is largest in absolute value. That is, if
f(x1, . . . , xv) =

∑
ai1...ivx

i1
1 · . . . ·xiv

v then W := max |ai1...ivX
i1
1 · . . . ·X iv

v |. An alternative no-
tation that we will sometimes use is W = ‖f(x1X1, . . . , xvXv)‖∞. Let R := WX l1

1 · . . . ·X lv
v

for some choice of li that we specify later.
Let

gi1...iv(x1, . . . , xv) := xi1
1 · . . . · xiv

v f(x1, . . . , xv) · R

WX
i1
1 ·...·Xiv

v

and

g′i1...iv(x1, . . . , xv) := xi1
1 · . . . · xiv

v R,

29

Small roots of polynomials 3.3 A general strategy for choosing the shifts

for some sets of combinations (i1, . . . , iv) for g and g′. In order to let all gi1...iv be integer
polynomials, each li is defined as the largest degree of xi in these gi1...iv (given a choice of
the combinations (i1, . . . , iv) that are used).

We let the coefficient vectors of gi1...iv(x1X1, . . . , xvXv) and g′i1...iv(x1X1, . . . , xvXv) be
the basis of a lattice L. After the LLL reduction the first v − 1 vectors satisfy

||r1|| ≤ ||r2|| ≤ . . . ≤ ||rv−1|| ≤ 2
ω(ω−1)

4(ω+2−v) det(L)
1

ω+2−v .

Together with Theorem 3.6, we can conclude that if 2
ω(ω−1)

4(ω+2−v) det(L)
1

ω+2−v < R√
ω

is satisfied,

then we find v − 1 polynomials ri(x1, . . . , xv) that have the root (x
(0)
1 , . . . , x

(0)
v) over the

integers.

By the following generalization of Coron’s theorem by Hinek and Stinson, we know that
all these ri are independent of f .

Theorem 3.9 (Hinek/Stinson, [34])

A multiple h(x1, . . . , xv) of f(x1, . . . , xv) that is divisible by
∏v

j=1 X
lj
j has norm at least

2−(ρ+1)v+1

v∏
j=1

X
lj
j W,

where ρ is the maximum degree of the polynomials f, h in each variable separately.

Analogously to the bivariate case, one can show that this bound is (up to some terms that
do not depend on N) equivalent to Howgrave-Graham’s bound. Therefore, if Howgrave-
Graham’s bound is satisfied, then the polynomials ri are certainly independent of f . Un-
der Assumption 3.7, one can now use resultant methods to extract the root that f and
r1, . . . , rv−1 share.

3.3 A general strategy for choosing the shifts

In Section 3.2, we have explained the general framework of Coppersmith methods, based
on the works by Coppersmith, Howgrave-Graham, and Coron. One thing that we left open
in the discussion of the methods is the choice of the shift polynomials that describe the
lattice L.

This is because the choice of shifts depends heavily on the polynomial fN or f . For
specific polynomials that were used in cryptanalytic situations, the choices of the shift
polynomials have been described in the papers describing the attacks. So far, the only
work on designing a general way to choose the shift polynomials has been by Blömer and
May [7]. In their paper, they give a strategy for the choice of shifts in the case of small
integer roots of bivariate polynomials f(x, y).

In this section, we discuss a general strategy of choosing the shifts for multivariate
polynomials, for both the modular and the integer case.

30

Small roots of polynomials 3.3 A general strategy for choosing the shifts

3.3.1 Small modular roots

Suppose we want to find a small root (x
(0)
1 , . . . , x

(0)
v) of a polynomial fN modulo a known

composite integer N of unknown factorization. We assume that we know an upper bound
for the root, namely |x(0)

j | < Xj for some given Xj, for j = 1, . . . , v.
Our goal in this section is to choose the shift polynomials

gi1...ivk(x1, . . . , xv) := xi1
1 · . . . · xiv

v (fN(x1, . . . , xv))
kNm−k,

that define the lattice L in such a way that they produce a good bound

det(L) < 2
−ω(ω−1)

4 ·
(

1√
ω

)ω+1−v

·Nm(ω+1−v). (3.2)

Remember that det(L) depends on the upper bounds Xj, and that we aim to find the
maximal values of the Xj for which the Coppersmith method succeeds in finding the root.

Suppose we are in an attack scenario where finding a small root means breaking a
certain RSA instance (that is, being able to factor a modulus N in polynomial time given
(N, e) if the RSA parameters satisfy special conditions). Then, we want to obtain a bound
on how large the root can be such that it can still be found. To obtain a clean bound, it
is common to introduce an error term ε for all the terms that do not depend on N . In
this way, we get an asymptotic bound, since for N → ∞, ε goes to 0. This means, that
instead of checking (3.2), we simply use det(L) < Nm(ω+1−v)−ε. If the number of variables v
is taken to be constant, we can further simplify the condition to

det(L) < Nmω−ε. (3.3)

First of all, we describe a way to order the monomials. For an introduction on various
monomial orderings, we refer to [21, Section 2.2]. In the case of modular roots of a polyno-
mial fN , we look at the Newton polygon P of fN . Suppose we represent every monomial
xi1

1 · . . . · xiv
v of fN with a tuple (i1, . . . , iv) ∈ Zv. Then the Newton polygon P of fN is

defined as the convex hull of this set, that is

conv({(i1, . . . , iv) ∈ Zv|xi1
1 · . . . · xiv

v is a monomial of fN}).
Hence, all monomials of fN correspond to a point in P ∩ Zv. For this Newton polygon P ,
we pick a positive weight vector that has a unique maximum in P ∩ Zv. A positive
weight vector is a vector w = (w1, . . . , wv) with all wi ≥ 0, that assigns a weight to
each point (i1, . . . , iv) in P ∩ Zv. The weight of (i1, . . . , iv), that we shall sometimes
also refer to as the weight of the corresponding monomial xi1

1 · . . . · xiv
v , is computed as

(w1, . . . , wv) · (i1, . . . , iv)T =
∑v

j=1 wj · ij.
As said, we choose a w such that one vertex of P , corresponding to a monomial l of fN ,

has maximal weight. As a result, there is no monomial in fN besides l that is divisible
by l. For a given weight vector, we can order the set of monomials of fN according to the
weight of their corresponding point in P ∩Zv. If two monomials have equal weight, we can

31

Small roots of polynomials 3.3 A general strategy for choosing the shifts

order them according to the lexicographical ordering. The monomial in fN with maximal
weight, l, is called the leading monomial of fN , and we name its coefficient al. We can
assume that gcd(N, al) is 1, or else we have found a factor of N . Therefore, we can use
f ′N = a−1

l fN mod N .

We start by explaining the basic strategy for choosing the shifts, after which we extend
it slightly to obtain the full strategy.

Basic Strategy:

Let ε > 0 have any fixed small value. Depending on ε, we fix an integer m. For
k ∈ {0, . . . ,m}, we define the set Mk of monomials by

Mk := {xi1
1 xi2

2 · . . . · xiv
v | xi1

1 xi2
2 · . . . · xiv

v is a monomial of fm
N

and
xi1

1 xi2
2 · . . . · xiv

v

lk
is a monomial of fm−k

N }.
Moreover, let Mm+1 := ∅. In this definition of Mk and throughout this thesis, we assume
that the monomials of fN up to fm−1

N are all contained in the monomials of fm
N . If this is

not the case, the definition can be slightly changed such that Mk contains all monomials

xi1
1 xi2

2 · . . . · xiv
v of f j

N for j ∈ {1, . . . ,m} for which
x

i1
1 x

i2
2 ·...·xiv

v

lk
is a monomial of f i

N for some
i ∈ {0, . . . , m− k}. Notice that by definition the set M0 contains all the monomials in fm

N .
Next, we define the following shift polynomials:

gi1...ivk(x1, . . . , xv) :=
xi1

1 xi2
2 · . . . · xiv

v

lk
f ′N(x1, . . . , xv)

kNm−k,

for k = 0, . . . , m and xi1
1 xi2

2 · . . . · xiv
v ∈ Mk\Mk+1.

All polynomials g have the root (x
(0)
1 , . . . , x

(0)
v) modulo Nm. If we define a lattice L

by taking the coefficient vectors of g(x1X1, . . . , xvXv) as a basis, we can force the matrix
describing L to be lower triangular. The diagonal elements are those corresponding to
the monomial lk in (f ′N)k for each row. Therefore, the diagonal terms of the matrix are
X i1

1 X i2
2 · . . . ·X iv

v Nm−k for the given combinations of k and ij.

Let us try to get some intuition on the choice of the sets Mk. We aim to have a matrix
with a low determinant. To keep the diagonal element corresponding to the monomial
xi1

1 xi2
2 · . . . · xiv

v of fm
N as small as possible, we use the largest possible powers of fN in the

shifts. The condition that
x

i1
1 x

i2
2 ·...·xiv

v

lk
is a monomial of fm−k

N ensures that no monomials
appear that are not in fm

N .
For a small example, consider the polynomial fN(x, y) = 1 + xy2 + x2y. Let us take

l = x2y as our leading term, and m = 2. We want to build a lattice whose columns
correspond to the monomials {1, xy2, x2y, x2y4, x3y3, x4y2} of f 2

N . The shifts given by our
strategy are:

for 1 ∈ M0\M1: N2,
for xy2 ∈ M0\M1: xy2N2,
for x2y4 ∈ M0\M1: x2y4N2,

for x2y ∈ M1\M2: fNN,
for x3y3 ∈ M1\M2: xy2fNN,
for x4y2 ∈ M2\M3: f 2

N .

32

Small roots of polynomials 3.3 A general strategy for choosing the shifts

Note that the monomial x2y4 is not in M1. Although x2y4 is divisible by l = x2y and
therefore we could obtain x2y4 also by using the shift y3fNN , the product y3fN would
produce the new monomials y3 and xy5, which are not in f 2

N .

As one can see, the matrix describing the lattice of the above example is lower trian-
gular. To get some intuition on the ordering that makes this possible, let us go back to
the notation of the Newton polygon P . Recall that every monomial of fm

N corresponds to
a point in mP ∩ Zv. For every point u = (i1, . . . , iv) ∈ Zv corresponding to a monomial
xi1

1 · . . . · xiv
v , define

Pu := u− kl + kP,

where k is the largest integer possible such that Pu ⊆ mP , and l is the point corresponding
to the leading monomial l of fN . Note that

• Pu exists for every u ∈ mP ∩ Zv,

• Pu contains u,

• u has maximal weight in Pu, since kl is maximal in kP .

If k is the integer that is used in the construction of Pu for some u = (i1, . . . , iv), then
the monomial xi1

1 · . . . · xiv
v that corresponds to u is in Mk\Mk+1. Hence, the monomials

corresponding to Pu are exactly those that appear in the shift gi1...ivk of xi1
1 · . . . ·xiv

v . In Pu,
u is the unique maximum with respect to the given weight vector. Therefore, if one orders
the monomials of fm

N according to their weight, then one can be sure that any monomial
corresponding to a point u′ that is higher or equal in weight than u cannot occur in the
shift of u. Hence, if we order the matrix describing the lattice L such that the columns
correspond to the monomials of fm

N in increasing order, then we are certain that we get a
lower triangular matrix.

For an example of the ordering, let us look at fN(x, y) = 1+x+x2 +y +xy +x2y +xy2

(whose Newton polygon P has the shape of a ‘little house’). In Figure 3.3, the polygons
P , 2P , and 3P are shown, which means that we are looking at all monomials of fm

N , for
m = 3. For the weight vector (0, 1), every monomial in fN has a weight that is equal to the
exponent of y in the monomial. Obviously, l = xy2 is the unique monomial with maximal
weight in fN (in other words: l = (1, 2) is the unique vertex of maximal weight in P).

The monomial x4y5 is in f 3
N , and therefore u = (4, 5) is in 3P ∩Z2. For this u one can

check that

Pu = (4, 5)− 2(1, 2) + 2P.

Hence, the monomials in g45 = x4y5

l2
f 2

NN are those corresponding to the lattice points
of Pu. Since we have made sure that (4, 5) is the unique vertex of maximal weight in Pu,
all other monomials of g45 are strictly smaller in weight than x4y5. Therefore, the ordering
corresponding to the weight vector ensures a triangular matrix.

33

Small roots of polynomials 3.3 A general strategy for choosing the shifts

1 2 3 4 5 6
Exponent of x

1
2
3
4
5
6

Exponent of y

Figure 3.3: An example of the ordering

Now that we have discussed the triangular representation of the lattice, let us see which
bound we can derive from our condition det(L) < Nmω−ε. We have that

det(L) =
∏

k=0,...,m and x
i1
1 x

i2
2 ·...·xiv

v ∈Mk\Mk+1

X i1
1 X i2

2 · . . . ·X iv
v Nm−k

=
v∏

j=1

X

Pm
k=0

P
x

i1
1 x

i2
2 ·...·xiv

v ∈Mk\Mk+1
ij

j N

Pm
k=0

P
x

i1
1 x

i2
2 ·...·xiv

v ∈Mk\Mk+1
(m−k)

.

Moreover,

dim(L) = ω =
m∑

k=0

∑

x
i1
1 x

i2
2 ·...·xiv

v ∈Mk\Mk+1

1.

We conclude that the condition det(L) < Nmω−ε reduces to

v∏
j=1

X
sj

j < N sN−ε, with

sj =
∑

x
i1
1 ...xiv

v ∈M0
ij, for 1 ≤ j ≤ v, and

sN =
∑m

k=0 k(|Mk| − |Mk+1|) =
∑m

k=1 |Mk|.
(3.4)

If we follow this procedure of choosing shifts for a given fN , then (3.4) will give us an
upper bound on the size of the root that we are trying to find. For Xj and N satisfying

this bound we obtain v polynomials ri such that ri(x
(0)
1 , . . . , x

(0)
v) = 0. If v = 1, then the

method is provable. For v ≥ 2, we rely on Assumption 3.7 to find (x
(0)
1 , . . . , x

(0)
v).

Extended Strategy:

For many polynomials, it is profitable to use extra shifts of a certain variable (for instance,
if one Xi is significantly smaller than the other upper bounds Xj, j 6= i. If we use extra
shifts of the variable x1, then we can extend our basic strategy by using the following Mk.

34

Small roots of polynomials 3.3 A general strategy for choosing the shifts

Mk :=
⋃

0≤j≤t

{xi1+j
1 xi2

2 · . . . · xiv
v | xi1

1 xi2
2 · . . . · xiv

v is a monomial of fm
N

and
xi1

1 xi2
2 · . . . · xiv

v

lk
is a monomial of fm−k

N }.

Moreover, extra shifts of several variables, or combined shifts should be considered to ob-
tain an optimal bound. The number of extra shifts can be described using a parameter t
that can be optimized. Using this new definition of Mk, the rest of the strategy conforms
to the basic strategy as described before. Let us now give some examples, and show how
the known results on small modular roots from [6, 10, 16] are all special cases of our basic
or extended strategy.

Examples:

Here, we show that the known results of Boneh and Durfee, Blömer and May, and Copper-
smith [10, 6, 16] in this field are special cases of our strategy. Although they were originally
described in different ways, their results can also be obtained if one follows the basic or
extended strategy described in this section.

‘Boneh/Durfee attack’ [10]:

Recall that in the attack by Boneh and Durfee [10], the goal was to find the small root
(d, p + q − 1) of the polynomial fe(x, y) = 1 + x(N − y) modulo e.

Let us discuss in general how small a root (x0, y0) of a polynomial

fN(x, y) = a0 + a1x + a2xy

modulo some N should be such that it can be found by a Coppersmith method. The known
bound that the upper bounds X and Y have to satisfy is

X2+3τY 1+3τ+3τ2

< N1+3τ−ε.

Here and in the following attack bounds, τ > 0 is always a parameter that can be optimized
after plugging in the values for X, Y and N .

The bound can be obtained by following our extended strategy with extra shifts of y.
As we described above, the extended strategy then prescribes

Mk :=
⋃

0≤j≤t

{xi1yi2+j

∣∣∣∣xi1yi2 monomial of fm
N and

xi1yi2

lk
monomial of fm−k

N }, for l = xy.

Figures 3.4 and 3.5 show the monomials of fm
N (which would be used if one would only

apply the basic strategy) and the new sets Mk when including extra y-shifts. One can
check that a correct description of the sets Mk is

xi1yi2 ∈ Mk ⇔ i1 = k, . . . , m and i2 = k, . . . , i1 + t,

for some t = τm (in the figure, t = 2 is shown).

35

Small roots of polynomials 3.3 A general strategy for choosing the shifts

x2

x2y

x2y2

Mm ® xmym

1 x xm

xmy

xmy2

xy

M0�M1

M1�M2

M2�M3

...

Figure 3.4: Shape of fm
N

xmym+1

xmym+2

y

y2 xy2

xy3
x2y3

x2y4

M0�M1

M1�M2

M2�M3

�Mm

...

Figure 3.5: Extra y-shifts

Substituting this definition of Mk in the bound of (3.4) leads to

X
1
6
(m3(2+3τ)+m2(6+3τ)+m·4)Y

1
6
(m3(1+3τ+3τ2)+m2(3+6τ+3τ2)+m(2+3τ))

< N
1
6
(m3(1+3τ)+m2(3+3τ)+m·2)−ε.

If we let all terms of order o(m3) contribute to ε, then we see that for m →∞, this bound
reduces to

X2+3τY 1+3τ+3τ2

< N1+3τ−ε.

To illustrate the example, we show how the matrix describing the lattice L looks for m = 2,
t = 1. Since the Boneh/Durfee-attack is about finding a root modulo e, we will use the
terminology of fe from here on instead of fN .

e2

e2X
e2X2

e2Y
ea′0 ea′1X eXY

ea′0X ea′1X
2 eX2Y

ea′0Y ea′1XY eXY 2

a′20 2a′0a
′
1X a′21 X2 2a′0XY 2a′1X

2Y X2Y 2

a′20 Y 2a′0a
′
1XY 2a′0XY 2 a′21 X2Y 2a′1X

2Y 2 X2Y 3

Figure 3.6: Example of a Boneh/Durfee-lattice: m = 2, t = 1

The columns of the matrix correspond to the monomials 1, x, x2, y (of M0\M1), xy, x2y, xy2

(of M1\M2) and x2y2, x2y3 (of M2) respectively. The rows represent the shifts gi1i2(x, y) :=
xi1yi2(f ′e(x, y))kem−k, where f ′e(x, y) = a−1

2 fe(x, y) = a′0 + a′1x + xy.

36

Small roots of polynomials 3.3 A general strategy for choosing the shifts

In the case of the Boneh/Durfee-attack on RSA-Small-d, we know that the root (x0, y0)

we are looking for has upper bounds X = Nβ and Y = 3N
1
2 . Since we put all terms that

do not depend on N in our error term ε, we see that

β(2 + 3τ) +
1

2
(1 + 3τ + 3τ 2) < 1 · (1 + 3τ)

is the asymptotical bound of the attack. This reduces to

3τ 2 + 3τ(2β − 1) + (4β − 1) < 0.

The left hand side polynomial has its maximum for τ = 1
2
− β. Substituting this value, we

obtain

−3β2 + 7β − 7

4
< 0,

which reduces to β < 7
6
− 1

3

√
7 ≈ 0.284.

In [10], Boneh and Durfee improve this bound a little more to β < 1 − 1
2

√
2 ≈ 0.292.

They improve the bound by looking at sublattices of the lattice described before. A
complication with this technique is that the sublattices no longer have full rank, which
makes the analysis harder. We go into more detail about sublattices in Section 7.2.

For completeness, Boneh/Durfee’s result is stated in the following theorem.

Theorem 3.10 (Boneh/Durfee, [10])
Under Assumption 3.7, for every ε > 0, there exists n0 such that for every n > n0, the
following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n.

Moreover, let d < N0.292−ε. Given N , and e such that ed = 1 mod φ(N), one can recover
d in time polynomial in n.

‘Blömer/May attack’ [6]:

In Section 4.2, we discuss the known partial key exposure attacks on RSA, among which
are attacks by Blömer and May that use the following polynomial:

fN(x, y, z) = a0 + a1x + a2y + a3yz.

Here, we sketch how the known bound for this polynomial,

X1+4τY 2+4τZ1+4τ+6τ2

< N1+4τ−ε,

can be obtained by following our extended strategy with extra shifts of z.
Suppose we choose l = x as leading monomial. Then the set Mk can be described as

Mk :=
⋃

0≤j≤t{xi1yi2zi3+j |xi1yi2zi3 monomial of fm
N

and xi1yi2zi3

lk
monomial of fm−k

N }.

37

Small roots of polynomials 3.3 A general strategy for choosing the shifts

We find that

xi1yi2zi3 ∈ Mk ⇔ i1 = k, . . . , m ; i2 = 0, . . . ,m− i1 ; i3 = 0, . . . , i2 + t,

for some t = τm. Substituting this new definition of Mk in the bound (3.4) will result in
Blömer/May’s bound.

Generalized Rectangles and Generalized Lower Triangles [16]:

Now that we have used our extended strategy twice to obtain the known bounds of
Boneh/Durfee and Blömer/May, we also mention two generalizations of known results
that can be derived using only the basic strategy.

Suppose fN(x1, . . . , xv) is a polynomial with the shape of a generalized rectangle, that
is, the degree of xi is λiD. Then the bound (heuristically for v ≥ 2) for which a root

(x
(0)
1 , . . . , x

(0)
v) of fN modulo N can be found, is given by

Xλ1
1 · . . . ·Xλv

v < N
2

(v+1)D
−ε.

This bound is a generalization of Coppersmith’s bound X < N
1
D [16] and the heuristic

extension XY < N
2

3D . Nguyen and Stern [59] already mentioned the bound Xλ1Y λ2 <

N
2

3D , for the bivariate case.
The general result can be obtained by following the basic strategy, with

l = xλ1D
1 · xλ2D

2 · . . . · xλvD
v ,

and

xi1
1 xi2

2 · . . . · xiv
v ∈ Mk ⇔ ij = λjDk, . . . , λjDm (j = 1, . . . , v).

Suppose fN(x1, . . . , xv) is a polynomial with the shape of a generalized lower triangle,
that is, its monomials are xi1

1 · . . . · xiv
v for

0 ≤ i1 ≤ λ1D, 0 ≤ i2 ≤ λ2D − λ2

λ1

i1, . . . , 0 ≤ iv ≤ λvD −
v−1∑
r=1

λvD

λr

ir.

Then the bound (heuristically for v ≥ 2) is given by

Xλ1
1 · . . . ·Xλv

v < N
1
D
−ε.

The known special cases are those for fN(x) or fN(x, y) with total degree D (in other

words, λj = 1). Both X < N
1
D and XY < N

1
D appeared in [16].

The general bound can be easily derived by following the basic strategy with l = xλ1D
1

and

xi1
1 xi2

2 · . . . · xiv
v ∈ Mk ⇔ i1 = λ1Dk, . . . , λ1Dm ;

ij = 0, . . . , λjDm−∑j−1
r=1

λj

λr
ir (j = 2, . . . , v).

38

Small roots of polynomials 3.3 A general strategy for choosing the shifts

x2

x2y
xy

y
1

x

z
yzxz

x2z
xyz

x2yz

Figure 3.7: Generalized Rectangle

x2 y
1

x

z

Figure 3.8: Generalized Lower Triangle

3.3.2 Small integer roots

Suppose we want to find a small integer root (x
(0)
1 , . . . , x

(0)
v) of an irreducible polynomial f .

We know that the root is small in the sense that |x(0)
j | < Xj, for j = 1, . . . , v.

The goal in this section is to choose the shift polynomials

gi1...iv := xi1
1 · . . . · xiv

v f(x1, . . . , xv) · R

WX
i1
1 ·...·Xiv

v

and

g′i1...iv := xi1
1 · . . . · xiv

v R,

that define the lattice L in such a way that they produce a good bound

det(L) < 2
−ω(ω−1)

4 ·
(

1√
ω

)ω+2−v

·Rω+2−v. (3.5)

To obtain a simple, asymptotic bound, we again introduce an error term ε for all the
terms that do not depend on N . This means that instead of checking (3.5), we simply use
det(L) < Rω+2−v−ε. If the number of variables v is taken to be constant, we can further
simplify the condition to

det(L) < Rω−ε. (3.6)

Analogously to the modular case, we fix an integer m depending on ε. We call dj the
maximal degree of xj in f , and W the maximal absolute coefficient of f(x1X1, . . . , xvXv).

Moreover, we define R = W
∏n

j=1 X
dj(m−1)
j . To work with a polynomial with constant

term 1, we define f ′ = a−1
0 f mod R, where a0 is the constant term of f . This means that

we should have a0 6= 0 and gcd(a0, R) = 1. The latter is easy to achieve, analogous to
[18, Appendix A], since any Xj with gcd(a0, Xj) 6= 1 can be changed into an X ′

j such that
Xj < X ′

j < 2Xj and gcd(a0, X
′
j) = 1. The same holds for W .

39

Small roots of polynomials 3.3 A general strategy for choosing the shifts

Let us now consider the case a0 = 0. In [18, Appendix A], Coron discussed this case
for bivariate polynomials, and showed a simple way to transfer a polynomial f with zero
constant term into a polynomial f ∗ with nonzero constant term.

A general way to do this for multivariate polynomials would be the following. First,
we find a nonzero integer vector (y1, . . . , yv) such that f(y1, . . . , yv) 6= 0. This can be
constructed in polynomial time since there are only polynomially many roots within the
given bounds. Then we define f ∗(x1, . . . , xv) := f(x1 + y1, . . . , xv + yv), and look for roots
of f ∗. Since f ∗(0, . . . , 0) = f(y1, . . . , yv), f ∗ has a nonzero constant term.

We would like to point out that the switch to f ∗ will affect the set of monomials, and
new monomials may appear in f ∗ that were not in f . This may affect the analysis and
lead to a different Coppersmith-type bound. This issue already appears with bivariate
polynomials, but it did not affect Coron’s analysis since in his case the set of monomials
stayed the same. From now on we will assume that a0 6= 0. In the unfortunate case
that a0 = 0 and switching to f ∗ leads to a different monomial set, we suggest to use
Coppersmith’s original method1 (as explained in Section 5.3.3).

Let us now describe our strategy for choosing the shifts in the case of integer roots. As
before, we start with the basic strategy, that we extend later to obtain the full strategy.

Basic Strategy:

We define S and M as the sets of monomials of fm−1 and fm respectively. We denote by
lj the largest exponent of xj that appears in the monomials of S, i.e. lj = dj(m− 1).

Next, we define the following shift polynomials

gi1...iv : xi1
1 xi2

2 · . . . · xiv
v f ′(x1, . . . , xv)

∏n
j=1 X

lj−ij
j , for xi1

1 xi2
2 · . . . · xiv

v ∈ S,

g′i1...iv : xi1
1 xi2

2 · . . . · xiv
v R, for xi1

1 xi2
2 · . . . · xiv

v ∈ M\S.

All gi1...iv and g′i1...iv have the root (x
(0)
1 , . . . , x

(0)
v) modulo R. The coefficient vectors of

gi1...iv(x1X1, . . . xvXv) and g′i1...iv(x1X1, . . . xvXv) form a lattice basis of a lattice L.

Using the following ordering of the monomials of S, we can order the basis matrix such

that it is upper triangular. We say that xi1
1 · . . . · xiv

v < x
i′1
1 · . . . · xi′v

v if
∑

ij <
∑

i′j. If∑
ij =

∑
i′j, then we use the lexicographical ordering.

The diagonal elements of the rows of g are those corresponding to the constant term

in f ′. Therefore, the diagonal entries of the matrix are
∏n

j=1 X
dj(m−1)
j for the polynomials g

and W
∏n

j=1 X
dj(m−1)+ij
j for the polynomials g′.

For constant v, we know that the determinant condition det(L) < Rω−ε ensures that
the v − 1 smallest vectors in an LLL reduced basis of L correspond to v − 1 polynomials
ri(x1, . . . xv) with ri(x

(0)
1 , . . . , x

(0)
v) = 0.

1One could also use Coron’s new method, as presented at Crypto’07 [19].

40

Small roots of polynomials 3.3 A general strategy for choosing the shifts

We find that the condition det(L) < Rω−ε reduces to

v∏
j=1

X
sj

j < W sW−ε, for sj =
∑

x
i1
1 ...xiv

v ∈M\S

ij , and sW = |S|. (3.7)

So if the bound (3.7) holds, we obtain v− 1 polynomials ri such that ri(x
(0)
1 , . . . , x

(0)
v) = 0.

By Theorem 3.9, these polynomials are independent of f . So, under Assumption 3.7, the
resultant computations of f and ri (for i = 1, . . . , v − 1) will reveal the root.

Extended Strategy:

As in the modular case, our strategy is not finished before exploring the possibilities of
extra shifts of a certain variable (or more variables). Suppose we use extra shifts of the
variable x1. Then, instead of S = {monomials of fm−1} and M = {monomials of fm}, we
use

S =
⋃

0≤j≤t

{xi1+j
1 xi2

2 · . . . · xiv
v | xi1

1 xi2
2 · . . . · xiv

v is a monomial of fm−1},

M = {monomials of xi1
1 xi2

2 · . . . · xiv
v · f | xi1

1 xi2
2 · . . . · xiv

v ∈ S}.
With the new definitions, the rest of the strategy conforms to the basic strategy, except

for the value of R. It is necessary to change R = W
∏v

j=1 X
dj(m−1)
j into R = W

∏v
j=1 X

lj
j ,

where lj is the largest exponent of xj that appears in the monomials of S.

Examples:

Here, we collect the known results by Blömer and May and Coppersmith [7, 16] for poly-
nomials fN with a small integer root. These known results are again special cases of our
extended or basic strategy. As our strategy for finding small integer roots is a generali-
zation of the technique described in [7] to more variables, the first claim is not surprising.
The examples we give in this section are very brief, since we will treat new polynomials
for new attacks in more detail throughout this thesis.

‘Blömer/May, upper triangle’ [7]:

In [7], Blömer and May describe an alternative method to obtain the attack that Boneh,
Durfee, and Howgrave-Graham published on Takagi’s RSA variant [13]. For N = prq, and
an approximation p̃ of p, one could try to find the root of the polynomial

f(x, y) = (p̃ + x)ry −N.

This is an example of what Blömer and May call a polynomial with the shape of an upper
triangle. In general, we deal with a polynomial f(x, y) with xi1yi2 for i2 = 0, . . . , D and
i1 = 0, . . . , λi2, for instance f(x, y) = a0 + a1y + a2xy + a3x

2y (where D = 1 and λ = 2).
The known bound is

X(λ+τ)2Y 2(λ+τ) < W
1
D

(λ+2τ)−ε.

41

Small roots of polynomials 3.3 A general strategy for choosing the shifts

Figures 3.9 and 3.10 show the monomials of fm (which would be used if one would follow
the basic strategy) and shapes of S and M if one uses extra shifts of x.

yDm

yD Hm-1L

1

yD xΛ DyD

xΛ D Hm-1LyD Hm-1L

xΛ DmyDm

M�S

S

Figure 3.9: Shape of fm

xΛD+tyD

xΛDm+tyDm

xt

¯

M�S

S

Figure 3.10: Extra x-shifts

One can check that the new definitions of S and M are

xi1yi2 ∈ S ⇔ i2 = 0, . . . , D(m− 1) ; i1 = 0, . . . , λi2 + t.

xi1yi2 ∈ M ⇔ i2 = 0, . . . , Dm ; i1 = 0, . . . , λi2 + t.

for some t = τDm.
Substituting this in inequality (3.7) will lead to the bound as given above.

‘Blömer/May, extended rectangle’ [7]:

Another type of polynomial that Blömer and May study in their paper about integer
roots of polynomials, is the polynomial with the shape of an extended rectangle. That is,
f(x, y) with xi1yi2 for i2 = 0, . . . , D, i1 = 0, . . . , γD + λ(D − i2), for instance f(x, y) =
a0 + a1x + a2x

2 + a3x
3 + a4y + a5xy (where D = 1 and γ = 1 and λ = 2). The known

bound is

Xλ2+3γλ+2τλ+4τγ+τ2+3γ2

Y λ+3γ+2τ < W
1
D

(λ+2γ+2τ)−ε.

Besides the shifts of the basic strategy (Figure 3.11), we use extra x-shifts (Figure 3.12)
and work with

xi1yi2 ∈ S ⇔ i2 = 0, . . . , D(m− 1) ;
i1 = 0, . . . , γD(m− 1) + λ(D(m− 1)− i2) + t.

xi1yi2 ∈ M ⇔ i2 = 0, . . . , Dm ;
i1 = 0, . . . , γDm + λ(Dm− i2) + t.

for some t = τDm. This leads to the bound as stated above.

42

Small roots of polynomials 3.3 A general strategy for choosing the shifts

xΓDmyDm

xHΓ+ΛLDm

yDm

1

S

M�S

Figure 3.11: Shape of fm

xΓDm+tyDm

xHΓ+ΛLDm+t

S

M�S

Figure 3.12: Extra x-shifts

Generalized Rectangles and Generalized Lower Triangles [16]

As in the modular case, we mention two generalizations of known results that can be
derived using only the basic strategy.

Suppose f(x1, . . . , xv) is a polynomial with the shape of a generalized rectangle, that is,
the degree of xi is λiD. Then the bound (heuristically for v ≥ 3) is

Xλ1
1 · . . . ·Xλv

v < W
2

(v+1)D
−ε.

The first special case of this situation was again analyzed by Coppersmith in [16], finding

the bound XY < W
2

3D for polynomials f(x, y) with degree D per variable. In [7], Blömer
and May generalized this for bivariate polynomials to the case of rectangles instead of
squares. Our result is a generalization of the one described in [7] to polynomials with any
number of variables.

The bound can easily be derived by following the basic strategy, with

xi1
1 xi2

2 · . . . · xiv
v ∈ S ⇔ ij = 0, . . . , λjD(m− 1) (j = 1, . . . , v)

xi1
1 xi2

2 · . . . · xiv
v ∈ M ⇔ ij = 0, . . . , λjDm (j = 1, . . . , v)

Suppose f(x1, . . . , xv) is a polynomial with the shape of a generalized lower triangle,
that is, its monomial are xi1

1 · . . . · xiv
v for

0 ≤ i1 ≤ λ1D, 0 ≤ i2 ≤ λ2D − λ2

λ1

i1, . . . , 0 ≤ iv ≤ λvD −
v−1∑
r=1

λv

λr

ir.

Then the bound (heuristically for v ≥ 3) is

Xλ1
1 · . . . ·Xλv

v < W
1
D
−ε.

43

Small roots of polynomials 3.4 Tabular overview

The first known example is the polynomial f(x, y) with total degree D, analyzed by Copper-

smith [16]. He showed that the bound for this situation is XY < W
1
D . The generalization

to lower triangles with unequal sides was again made by Blömer and May [7], for a bi-
variate polynomial f(x, y) such that the monomials xi1yi2 appear for 0 ≤ i1 ≤ D and
0 ≤ i2 ≤ λD − i1. Our result is an extension of their two-dimensional case.

To obtain the general bound, one can use

xi1
1 xi2

2 · . . . · xiv
v ∈ S ⇔ ij = 0, . . . , λjD(m− 1)−∑j−1

r=1
λj

λr
ir for j = 1, . . . , v,

xi1
1 xi2

2 · . . . · xiv
v ∈ M ⇔ ij = 0, . . . , λjDm−∑j−1

r=1
λj

λr
ir for j = 1, . . . , v.

3.4 Tabular overview

In the following tables, we give an overview of all results concerning bounds for finding
roots with Coppersmith methods. The first table includes the results for finding small
modular roots, the second for finding small integer roots. In the second table, we have
added some new results, corresponding to attacks that will be explained in detail in the
following chapters.

Monomials of fN Bound Reference

1, x, xy X2+3τY 1+3τ+3τ2
< N1+3τ−ε Boneh/Durfee [10]

1, x, y, yz X1+4τY 2+4τZ1+4τ+6τ2
< N1+4τ−ε Blömer/May [6]

generalized Xλ1
1 · . . . ·Xλv

v < N
2

(v+1)D
−ε generalization of

rectangle Coppersmith [16]

generalized Xλ1
1 · . . . ·Xλv

v < N
1
D
−ε generalization of

lower triangle Coppersmith [16]

Table 3.1: Bounds for finding small modular roots of polynomials

44

Small roots of polynomials 3.4 Tabular overview

Monomials Bound Reference
of f

upper triangle X(λ+τ)2Y 2(λ+τ) < W
1
D

(λ+2τ)−ε Blömer/May [7]

extended Xλ2+3γλ+2τλ+4τγ+τ2+3γ2
Y λ+3γ+2τ < W

1
D

(λ+2γ+2τ)−ε Blömer/May [7]
rectangle

generalized Xλ1
1 · . . . ·Xλv

v < W
2

(v+1)D
−ε generalization of

rectangle Coppersmith [16]

generalized Xλ1
1 · . . . ·Xλv

v < W
1
D
−ε generalization of

lower triangle Coppersmith [16]

1, x, y, yz X1+3τY 2+3τZ1+3τ+3τ2
< W 1+3τ−ε Section 4.4.2

1, x, y, z, yz X2+3τY 3+6τ+3τ2
Z3+3τ < W 2+3τ−ε Section 4.4.2

1, x1, x2, x3, x4, (X1X2)5+20τ+27τ2+12τ3
(X3X4)5+20τ+18τ2

< W 3+12τ+12τ2−ε Section 5.3.1
x1x2, x1x4,
x2x3, x3x4

1, x, x2, y, z, X7+9τ+3τ2
(Y Z)5+ 9

2
τ < W 3+3τ−ε Section 5.4.1

xy, xz, yz

Table 3.2: Bounds for finding small integer roots of polynomials

45

Small roots of polynomials 3.5 Complexity of attacks using Coppersmith’s method

3.5 Complexity of attacks using Coppersmith’s method

In the next chapters we will show many attacks on RSA variants that use Coppersmith
methods. For those attacks, we claim that the factorization of the RSA modulus N can
be found in time polynomial in n, the bitsize of N . Therefore, we conclude this chapter by
commenting on the complexity of Coppersmith methods.

The running time of a Coppersmith method is dominated by the lattice basis reduc-
tion. A reduction using the algorithm of Nguyen and Stehlé [58] can be performed in time
O(ω5(ω+A)A), where A is the maximal bitsize of an entry in the lattice L of dimension ω.
Our lattice dimension ω depends on ε only, whereas the bitsize of the entries of the lattice
in our attacks will be bounded by a polynomial in n, the bitsize of N . Therefore, the
construction of r1, . . . , rv can be done in time polynomial in n. Moreover, the polyno-
mials r1, . . . , rv have a fixed degree that only depends on ε, and coefficients with bitsize
polynomial in n.

If r1(x1, . . . , xv), r2(x1, . . . , xv) are two polynomials with degx1
(r1) = d1, degx1

(r2) = d2,
then computing a resultant Resx1(r1, r2) consists of computing a determinant of a matrix
of size (d1 +d2)× (d1 +d2). The total degree of the resultant (a polynomial in the variables
(x2, . . . , xv)) is polynomial in the total degree of r1 and r2. Equivalently, the size of the
coefficients of the resultant is polynomial in the original coefficient sizes. To extract the
root, we need to repeat this process of computing resultants a fixed number of times. Every
time, computing the determinant of a matrix of size D×D can be done in a running time
of order D3. For details on resultant computations, we refer to [21, Chapter 3].

In Section 5.3 we use Gröbner bases as an alternative to resultants in the process of
finding a common root from a set of polynomials. Computing a Gröbner basis can be
done using the F4 algorithm [26] implemented in Magma. The complexity of computing
a Gröbner basis for a system of equations with a finite number of solutions is polynomial
in Dv, where D is the maximal degree of the input polynomials (see for instance [29,
Section 10.5]). However, in our attacks, both D and v will be fixed. To prevent the
coefficients in the Gröbner basis from exploding, we could compute the Gröbner basis over
Zp′ , where p′ is a prime larger than the RSA modulus N .

Hence, for a fixed ε, and a fixed number of variables, using Coppersmith’s method to
find a root can be done in polynomial time. However, note that in both the reduction phase
and in the resultants/Gröbner phase, we can run into practical limitations. Although a
lattice basis can be reduced in polynomial time, it could be that the reduction of a 300-
dimensional lattice takes days or weeks on a computer. The same holds for the computation
of resultants and Gröbner bases (especially for a larger number of variables). That is why
experiments are needed to show the practical implications of theoretical attacks using
Coppersmith methods.

46

4
Partial key exposure attacks on RSA

In this chapter, we discuss the known attacks on RSA-Small-e where a part of the bits of d
is known to an attacker. Moreover, we discuss some new partial key exposure attacks on
RSA-Small-d and RSA-Small-e.

Section 4.3 is based on [36], which is joint work with Benne de Weger. Section 4.4 is
based on [25], a joint paper with Matthias Ernst, Alexander May, and Benne de Weger.

4.1 Introduction

The concept of partial key exposure attacks on RSA was introduced in 1997 by Boneh,
Durfee and Frankel [12], and deals with the situation where an attacker has obtained some
bits of the private exponent d. The main question is:

How much information on the bits of d is needed such that an attacker can efficiently
reconstruct d, thereby breaking the RSA instance?

The motivation for exploring partial key exposure attacks comes from side channel
attacks such as power analysis, timing attacks, etc. Using a side channel, an attacker can
expose a part of d, generally some MSBs (most significant bits) or LSBs (least significant
bits). To see why an attacker usually gets either MSBs or LSBs of the secret exponent, we
refer to [53].

In all subsequent papers about partial key exposure attacks on RSA, the assumption
is made (besides knowledge of MSBs/LSBs of d) that one of the exponents e, d (or, in
RSA-CRT variants, e or dp and dq) is chosen to be small. This means that either e or d
is at least significantly smaller than the modulus N . In Section 4.2 we will discuss these
partial key exposure attacks on RSA-Small-e. The known partial key exposure attacks on
RSA-CRT variants will be discussed in Chapter 5.

In Section 4.3 we discuss a simple but very efficient partial key exposure attack on
RSA-Small-d using a 2-dimensional lattice. As mentioned before, RSA-Small-d is es-
pecially useful for signing operations on constrained devices such as smartcards. One
could choose a private exponent d that is large enough to counter the attacks by Wiener
and Boneh/Durfee [75, 10]. However, since side channel attacks are often mounted on

47

Partial key exposure attacks on RSA 4.2 Known attacks

smartcard-settings, exploring the possibilities of partial key exposure attacks on RSA-
Small-d is very important. The attack we discuss in Section 4.3 is a generalization of the
attacks by Wiener [75] and Verheul/van Tilborg [72] to partial key exposure attacks.

In Section 4.4 we discuss new partial key exposure attacks on RSA-Small-e and RSA-
Small-d. In fact, we show that whenever one of the exponents e, d is chosen significantly
smaller than N , a partial key exposure attack exists.

4.2 Known attacks

Although Boneh, Durfee, and Frankel [12] introduced attacks that use partial knowledge of
the secret exponent d, we shall start with a result of Coppersmith that the attacks in [12]
are based on.

Theorem 4.1 (Coppersmith, [16])
Let N = pq be an n-bit RSA modulus, with p and q primes of bitsize 1

2
n. Suppose that either

the high-order 1
4
n bits of p or the low-order 1

4
n bits of p are known. Then the factorization

of N can be found in time polynomial in n.

Proof.
As Coppersmith showed in [16], this result can easily be derived from one of Coppersmith’s
bounds that we mentioned in Section 3.3.2. In [16], Coppersmith derives the bound

XY < W
2

3D
−ε

for polynomials f(x, y) with degree per variable D. Suppose that an attacker knows an

MSB part of p of size at least N
1
2
−δ. That means that he knows an approximation p̃ of p

such that the unknown part p0 = p− p̃ satisfies |p0| < N δ. Additionally, he can also derive
an approximation q̃ of q such that |q0| = |q − q̃| < N δ. The polynomial

f(x, y) = (p̃ + x)(q̃ + y)−N

has a root (x0, y0) = (p0, q0). Since f is a polynomial where the degree per variable is 1,

it holds that if XY < W
2
3
−ε is satisfied, then the unknown p0 and q0 can be found. Here,

X = Y = N δ and W = max{q̃X, p̃Y, XY, |N − p̃q̃|} = N
1
2
+δ. Hence, the asymptotic bound

is

2δ <
2

3

(
1

2
+ δ

)

which leads to δ < 1
4
. The result for known LSBs of p can be derived in a similar way.

2

The first partial key exposure attack on RSA-Small-e, by Boneh, Durfee, and Frankel, is
summarized in the following theorem.

48

Partial key exposure attacks on RSA 4.2 Known attacks

Theorem 4.2 (Boneh/Durfee/Frankel (LSBs), [12])
Let N = pq ≡ 3 mod 4 be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n. Let e,

d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = αn and bitsize(d) = n, for some α ∈ (0, 1
4
).

Suppose that an LSB part of d is known of at least 1
4
n bits. Then the factorization of N

can be found in time polynomial in n and e.

Proof sketch.
For a formal proof, we refer to [11]. However, we will sketch how this attack uses Copper-
smith’s theorem (Theorem 4.1). Suppose d0 ≡ d mod 2B is the known LSB part of d.
Then the RSA key equation ed = 1 + k(N + 1− (p + q)) implies that

ed0 ≡ 1 + k(N + 1− s) mod 2B, for s = p + q.

If all possibilities for k ∈ {1, . . . , e} are tried then in one of these trials s0 ≡ p+ q mod 2B

can be found. Next, one tries to solve the equation

p2 − s0p + N ≡ 0 mod 2B,

of which p0 ≡ p mod 2B is a solution. A solution x = (p− s0

2
) modulo 2B of

x2 ≡
(s0

2

)2

−N mod 2B,

can easily be found if the right hand side is congruent to 1 modulo 8 (see [63, p.184] for a
description of the method). Now,

(s0

2

)2

−N ≡ (p− q)2

4
mod 2B

and N ≡ 3 mod 4 ensures that the right hand side is congruent to 1 modulo 8. Hence,
p0 ≡ p mod 2

n
4 can be found. With Theorem 4.1, this reveals the factorization of N .

2

Since RSA-Small-e is a popular variant, the above attack for which only a quarter of the
LSBs of d are necessary is very serious. Steinfeld and Zheng [68] discovered that the above
attack works less well if p−q is a multiple of a large power of 2. Suppose that p−q = 2A ·y
for some odd integer y. Then

(s0

2

)2

−N ≡ (p− q)2

4
≡ 22A−2y2 mod 2B.

Therefore,
(x

2A−1

)2

≡ y2 mod 2B−2A+2.

Hence, if y2 ≡ 1 mod 8, then one can obtain only p mod 2B−A+1 instead of p mod 2B.
Therefore, Steinfeld and Zheng [68] propose to choose p and q such that they share a

number of LSBs, in order to diminish the power of the attack in [12]. Whether or not this
specific design criterion for p and q gives rise to other attacks is still an open question.

49

Partial key exposure attacks on RSA 4.2 Known attacks

The known attacks from [12] on RSA-Small-e with known MSBs of d are summarized in
the following theorem.

Theorem 4.3 (Boneh/Durfee/Frankel (MSBs), [12])
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n. Let e, d satisfy ed ≡ 1

mod φ(N) with bitsize(e) = αn and bitsize(d) = n, for some α ∈ (0, 1
2
). Suppose that an

MSB part of d is known of size at least N1−δ. Then the following statements are true.

1. If e is prime and α ∈ (1
4
, 1

2
), then the factorization of N can be found in time

polynomial in n if δ < 1− α.

2. If e is a product of r distinct (known) factors and α ∈ (1
4
, 1

2
), then the factorization

of N can be found in time polynomial in n and 2r if δ < 1− α.

3. If the factorization of e is unknown and α ∈ (0, 1
2
), then the factorization of N can

be found in time polynomial in n and N
d

if δ < α.

4. If the factorization of e is unknown and α ∈ (0, 1
2
), then the factorization of N can

be found in time polynomial in n, N
d
, and

√
N

p−q
, if δ < 1

4
.

For the proofs, we refer to [12]. Most of the proofs, like the one for Theorem 4.2, use
the information that is given to find either MSBs or LSBs of p, after which Theorem 4.1
is applied. Another fact that is used in some of the proofs is that for e < N

1
2 , the value of

k := ed−1
φ(N)

is known up to some constant error if as many MSBs of d as the bitsize of e are
given. Since this result influences our new attacks, we will discuss it briefly.

Theorem 4.4 (Boneh/Durfee/Frankel, [12])
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n. Let e, d satisfy ed ≡ 1

mod φ(N) with bitsize(e) = αn and bitsize(d) = n, for some α ∈ (0, 1
2
). Suppose that an

MSB part of d is known of size at least Nα. Then an approximation k̃ of k = ed−1
φ(N)

can be

computed such that the difference between k̃ and k is bounded by a constant.

Proof.
Suppose d = d̃ + d0, where d̃ is a known approximation of d and d0 is the unknown LSB

part of d of size N δ for some δ < 1− α. Then, for k̃ = ed̃−1
N

,

∣∣∣k − k̃
∣∣∣ =

∣∣∣∣∣
e(d̃ + d0)− 1

φ(N)
− ed̃− 1

N

∣∣∣∣∣ =

∣∣∣∣∣
(ed̃− 1)(N − φ(N)) + ed0N

Nφ(N)

∣∣∣∣∣

<
e

φ(N)

∣∣∣∣∣
d̃ · 3N 1

2

N
+ d0

∣∣∣∣∣ <
Nα

1
2
N

(
3N

1
2 + N δ

)
= 6Nα− 1

2 + 2Nα+δ−1 < 8.

2

50

Partial key exposure attacks on RSA 4.2 Known attacks

Boneh, Durfee and Frankel posed the open question whether or not there exist partial key
exposure attacks for e > N

1
2 . This question was answered affirmatively by Blömer and

May, who showed other partial key exposure attacks. Their best results are summarized
in the following theorems.

Theorem 4.5 (Blömer/May (LSBs), [6])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0 the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = αn and bitsize(d) = n,

for some α ∈ (0, 7
8
). Suppose that an LSB part of d is known of size at least N1−δ, with

δ ∈ (0, 1), and

δ <
5

6
− 1

3

√
1 + 6α− ε.

Then N can be factored in time polynomial in n.

Proof.
One can write d as d = d0 + x2(1−δ)n, where x is the unknown MSB part of d of size N δ.
Hence,

e(d0 + x2(1−δ)n) = 1 + k(N + 1− (p + q)).

It follows that

fe2(1−δ)n(y, z) = ed0 − 1− y(N + 1− z)

has a small root (y0, z0) = (k, p + q) modulo e2(1−δ)n.
From the “Boneh/Durfee” example in Section 3.3.1, one can see that for roots of a

polynomial modulo e2(1−δ)n, with monomials 1, y, yz, for some τ ≥ 0 that can be optimized
later, the following bound holds:

X2+3τY 1+3τ+3τ2

< (e2(1−δ)n)1+3τ−ε.

Substituting Y = Nα and Z = N
1
2 leads to the asymptotical bound

α(2 + 3τ) +
1

2
(1 + 3τ + 3τ 2) < (α + 1− δ)(1 + 3τ), or

3τ 2 + 3τ(2δ − 1) + (2α + 2δ − 1) < 0.

The optimal τ = 1
2
− δ gives

δ <
5

6
− 1

3

√
1 + 6α.

2

51

Partial key exposure attacks on RSA 4.2 Known attacks

Theorem 4.6 (Blömer/May (MSBs), [6])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0 the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = αn and bitsize(d) = n, for

some α ∈ (1
2
,
√

6−1
2

). Suppose that an MSB part of d is known of size at least N1−δ, with
δ ∈ (0, 1), and

δ <
1

8
(5− 2α−

√
36α2 + 12α− 15)− ε.

Then N can be factored in time polynomial in n.

Proof.
One can write d as d = d̃+d0, where d0 is the unknown LSB part of d of size N δ. Knowledge
of MSBs of d also leads to knowledge of MSBs of k, since

k̃ =
ed̃− 1

N + 1

is a good approximation of k. Analogous to the proof of Theorem 4.4, one can check that
k0, the unknown LSB part of k, satisfies |k0| = |k − k̃| < 6Nα− 1

2 + 2Nα+δ−1 < 8Nα− 1
2 .

Hence, if one substitutes x = d0, y = k0, and z = p + q − 1 in the RSA key equation,
then one obtains

e(d̃ + x) = 1 + (k̃ + y)(N − z).

It follows that

fN(x, y, z) = ex + (k̃ + y)z + (ed̃− 1)

has a small root (x0, y0, z0) = (d0, k0, p + q − 1) modulo N .
In Section 3.3, we have discussed the analysis for a polynomial modulo N , with mono-

mials 1, x, z, yz (see “Blömer/May attack”, one of the examples in Section 3.3.1). We saw
that, for some τ ≥ 0 that can be optimized later, the following bound holds:

X1+4τY 1+4τ+6τ2

Z2+4τ < N1+4τ−ε.

Substituting X = N δ, Y = Nα− 1
2 , and Z = N

1
2 , one finds the asymptotical bound

δ(1 + 4τ) + (α− 1

2
)(1 + 4τ + 6τ 2) +

1

2
(2 + 4τ) < (1 + 4τ), or

6(2α− 1)τ 2 + 8τ(δ + α− 1) + (2α + 2δ − 1) < 0.

The optimal τ =
8(1− δ − α)

12(2α− 1)
gives

δ <
1

8
(5− 2α−

√
36α2 + 12α− 15).

2

52

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

4.3 A new “2-dimensional” attack

In this section, we explore for which sizes of d one can mount an attack in a few seconds
with a very simple method using a 2-dimensional lattice. Our result is summarized in the
following theorem.

Theorem 4.7
Under Assumption 3.4, the following holds: Let N = pq be an n-bit RSA modulus, and
p and q primes of bitsize 1

2
n. Let e, d satisfy ed ≡ 1 mod φ(N) with bitsize(e) = n

and bitsize(d) = βn for some 0 < β < 1
2
. Given a (total) amount of (2β − 1

2
)n MSBs

and/or LSBs of d (see Figure 4.1), N can be factored in time polynomial in n, using a
2-dimensional lattice.

d: 100100010101111011100010100110111011001101

sizes: NΚN
1
����2 - ΒN2 Β-

1
����2 -Κ

® LSBsMSBs ¬

Figure 4.1: Partition of d for small d

Besides showing how the result of Theorem 4.7 is obtained, we show that the results
of Wiener [75] and Verheul/van Tilborg [72] can be obtained by our attack on small d and
are simply special (homogeneous and provable) cases.

4.3.1 Description of the new attack

Let d = Nβ < N
1
2 and e < φ(N) < N . Moreover, let dL be the known LSB part of d of

size Nκ, followed by an unknown middle part x of size N δ, which itself is followed by a
known MSB part dM , of size Nβ−κ−δ. Hence, we can write

d = dL + 2bκnex + 2bκne+bδnedM ,

where the notation b e means rounding to the nearest integer.
When we substitute the partition of d in the RSA key equation ed = 1 + kφ(N), we

obtain

e2bκnex + edL + e2bκne+bδnedM − 1 = k(N − (p + q − 1)).

Therefore, we must find the solution (x, y, z) = (x, k, p + q − 1) of the trivariate equation

e2bκnex−Ny + yz + R− 1 = 0, with R = edL + e2bκne+bδnedM .

53

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

The equation above implies that
∣∣e2bκnex−Ny + R

∣∣ = |1− yz| ≤ |k(p + q − 1)| ≤ |d(p + q)| ≤ 3Nβ+ 1
2 .

This is an inhomogeneous diophantine approximation problem in the unknowns x and y.
To solve it, we define a lattice L spanned by the rows of Γ, with

Γ =

(
C e2bκne

0 N

)
and a point v = (0,−R),

where C is an integer of size Nβ−δ+ 1
2 .

The lattice point (x,−y) · Γ is close to v, since

(x,−y) · Γ− v = (Cx, e2bκnex−Ny + R) ≈ (Nβ+ 1
2 , Nβ+ 1

2).

Our strategy to find x and y is therefore to start with a lattice point v′ close to v, and

add small multiples of the reduced basis vectors of the lattice L until we get Γ

(
x
−y

)
. To

do so, we apply lattice basis reduction to the rows of Γ, and obtain a reduced matrix Γred,
whose rows still span L. We aim to find an integer pair (z1, z2) for which

(z1, z2) · Γred = (x,−y) · Γ− ⌊
vΓ−1

red

⌉
Γred,

where
⌊
vΓ−1

red

⌉
= v′ is the lattice point we get from rounding the elements of vΓ−1

red to
nearest integers. Alternatively, one could also solve the closest vector problem to obtain a
lattice point v′ to start with, but in this way, the closest vector will almost immediately
appear as well.

It can be checked that

(z1, z2) · Γred = ((x,−y) · Γ− v)− (
⌊
vΓ−1

red

⌉
Γred − v) ≈ (Nβ+ 1

2 , Nβ+ 1
2) + (ε1, ε2) · Γred,

with |εi| < 1
2
. Therefore

(z1, z2) ≈ (Nβ+ 1
2 , Nβ+ 1

2) · Γ−1
red + (ε1, ε2).

We know that the reduced vectors r1, r2 of the reduced lattice basis represented by Γred

satisfy ||r1|| ≈ a−1 det(L)
1
2 and ||r2|| ≈ a det(L)

1
2 for some a ≥ 1. Hence,

Γred =

(
r1

r2

)
=

(
r11 r12

r21 r22

)
≈ det(L)

1
2 ·

(
a−1 a−1

a a

)
and

Γ−1
red =

1

det(L)

(
r22 −r12

−r21 r11

)
≈ det(L)−

1
2 ·

(
a a−1

a a−1

)
.

Thus,

(z1, z2) ≈ (a det(L)−
1
2 Nβ+ 1

2 + ε1, a
−1 det(L)−

1
2 Nβ+ 1

2 + ε2)

≈ (aN
1
2
(β+δ− 1

2
) + ε1, a

−1N
1
2
(β+δ− 1

2
) + ε2).

54

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

Each pair (z1, z2) leads to a pair (x,−y). If we try every x as the unknown part of d,
and every y as k, we can find a φ that satisfies ed − 1 = kφ. First we test whether φ,
computed as ed−1

k
is integral. For every possibility for φ, we find the p, q that satisfy both

N − φ = p + q − 1 and N = pq.
The number of pairs (z1, z2) to check is of size

aN
1
2
(β+δ− 1

2
) ·max{a−1N

1
2
(β+δ− 1

2
), 1}.

Hence, the number of pairs (z1, z2) to try is either

• O(Nβ+δ− 1
2), when a < N

1
2
(β+δ− 1

2
), or

• O(aN
1
2
(β+δ− 1

2
)), when a > N

1
2
(β+δ− 1

2
).

Note that in the latter case, z2 = 0, but we do have to check for all z1 separately.

As we shall see later, the attacks of Wiener [75] and Verheul/van Tilborg [72] are special
cases of this attack. For these situations, we show that the attacks are provable instead of
heuristic, simply because (x,−y) · Γ is small enough to ensure that the search region does
not depend on a.

However, if we are outside the range of Wiener’s and Verheul/van Tilborg’s attacks, it
is highly unusual that the lattice involved contains an exceptionally small nonzero vector.
By Assumption 3.4, we take a to be close to 1. Under this heuristic, the number of pairs
(z1, z2) to try is O(Nβ+δ− 1

2). We will comment later on how this assumption holds in the
examples that we tested.

Under our assumption, and provided that δ is smaller than or at most only marginally
larger than 1

2
− β, we can efficiently try all pairs (z1, z2) and find the factorization of N .

One may note that by knowing MSBs of d, one can also obtain an MSB part of k.
However, splitting k into a known and an unknown part results in more combinations of
variables, which we can only represent in a 3-dimensional lattice instead of a 2-dimensional
one. The 3-dimensional lattice attack will give a poorer performance than the method
described in this section. This is an example of a common phenomenon in lattice based
cryptanalysis, namely that sometimes one can get better results by leaving out information
that one knows, just because of the monomials of the equation involved.

Complexity of the attack:

The attack starts with one lattice basis reduction for a 2-dimensional lattice. This is just
a Lagrange reduction, which takes at most O((log N)3) bit operations.

Secondly, a number of O(Nβ+δ− 1
2) pairs (z1, z2) have to be checked for coming from a

solution. For each vector this check takes O((log N)2) bit operations.
It follows that the bit complexity of our attack is O((log N)3) when δ ≤ 1

2
− β, which

is polynomial. When δ = 1
2
− β + ε the bit complexity becomes exponential, namely

O(N ε(log N)2). This results in an increased workload by a factor N ε.

55

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

In other words, for an additional amount of r unknown bits, the complexity is equivalent
to an exhaustive search over r bits. Furthermore, if we let both d and the unknown part
of d grow r bits, such that the known part of d stays of the same size, one can check that
the extra workload will be an exhaustive search over 2r bits. This relates directly to a
result of Verheul and van Tilborg [72], on which we shall comment later.

Examples:

We have done several experiments for this attack. A typical case is with 2048-bit N and
δ = 0.156, β = 0.350 (e.g. ε = 0.006), meaning that d has about 717 bits, of which at most
320 of the least significant bits are unknown.

In this case, N
1
2
(δ+β− 1

2
) ≈ 70. We typically find a hit with ‖z‖ / 200. A search area

like this takes only a few seconds with Mathematica 5 on a 2GHz Pentium 4 PC. And with
δ ≤ 1

2
− β typically ‖z‖ ≈ 1, and the computation time is only a fraction of a second.

Here’s a baby example for {δ = 0.156, β = 0.35}. Let the 128-bit public key be given
by

N = 269866491905568049204176579604167754067,
e = 222981052634419442506270512141611354797.

Now suppose we know some MSBs of d, hence we know an approximation

d̃ = 24584250313023

of d for which d0 = d− d̃ is 0.156 · 128 ≈ 20 bits. We take

C = 2b128·(0.35−0.156+0.5)e = 289 and

R = ed̃ = 5481822013025924218218657989757723471271758362621331,

and we know that we are looking for {d0, k} such that

(d0,−k) · Γ− v = (d0,−k) ·
(

C e
0 N

)
− (0,−R)

is small. Then Γred is given by

(
93923748720621086836871453999104 223858603616044679201441362439981
−645630915298759729739927100850176 239654325473299927083414831489037

)

and bvΓ−1
rede = (−21188034626414783992,−3082348742879388262).

We then enumerate the pairs {z1, z2}, for each value computing

(x,−y) =
(
(z1, z2) · Γred + bvΓ−1

redeΓred

)
Γ−1.

We try d = d̃ + x and k = y, and solve N + 1 −
(

p +
N

p

)
=

ed− 1

k
to get a possible

factor p. At (z1, z2) = (−2,−1) we have a hit, namely x = 1016998, y = 20313089635876,
so we find that d = 24584251330021 and k = 20313089635876.

It follows that φ(N) = 269866491905568049171299025219693706736, and we obtain the
factors

p = 15833051453602685849, q = 17044502930871361483.

56

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

4.3.2 Special cases: Wiener and Verheul/van Tilborg

Wiener showed that when d < N
1
4 , it can be found in polynomial time [75]. Verheul and

van Tilborg’s extension of Wiener’s result shows the price when d is slightly larger than
this [72]. Their attacks can be seen as homogeneous diophantine approximation problems,
and continued fraction techniques are used to solve them.

Here, we will show that Wiener’s and Verheul/van Tilborg’s attacks are special cases
of our method. Moreover, we will show that in these cases the method is provable, in other
words, it does not depend on the size of a (the parameter that describes the unbalancedness
of the lattice).

As we explained in Section 2.3, Wiener bases his attack on the fact that k
d

can be found
as a convergent of e

N
if

∣∣∣∣
e

N
− k

d

∣∣∣∣ <
1

2d2
.

It is well known (see for instance [53]) that this can also be described using a 2-dimensional
lattice. When we assume no part of d is known (dM = dL = 0), it follows that R = 0 and

Γ =

(
C e
0 N

)
, v = (0, 0),

with C of size Nβ−δ+ 1
2 = N

1
2 , will reproduce Wiener’s result, namely that the method will

work if β < 1
4
. Later we will show that the solution will be found by the shortest lattice

vector only, making this case provable.

Verheul and van Tilborg [72] have given an extension of Wiener’s attack, where d is

at most slightly larger than N
1
4 and no bits are known. To find k

d
, they look not only at

convergents of e
N

, but also at ‘linear combinations’ of consecutive convergents, which, be it

not the best, nevertheless are pretty good approximations. When
pi−1

qi−1

,
pi

qi

are consecutive

convergents, then they also look for approximations to e
N

of the form
λpi + µpi−1

λqi + µqi−1

for

parameters λ, µ ∈ N. Then they have a weaker inequality to satisfy, namely
∣∣∣∣
e

N
− k

d

∣∣∣∣ <
c

d2
,

where the exact value for c depends on the search region for λ and µ. In this way they show
that in order to extend Wiener’s result for d < N

1
4 by r bits, one has to do an additional

computation with a complexity of an exhaustive search over 2r bits.
In the language of lattices this becomes immediately clear. With Γ as above and v = 0

(as we’re still in the homogeneous case), we have seen that for δ = β = 1
4
+ε, the complexity

of the attack is O(N2ε(log N)2).

57

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

The example given in [72] will go as follows in our method. We start with the lattice

Γ =

(
238 e
0 N

)
=

(
238 7115167804808765210427
0 31877667548624237348233

)

(note that in [72] the value of e contains a misprint).
We compute the reduced basis

Γred =

(
42694311384449024 34997160860155755
87227281088446464 −133735834148055649

)
.

The lattice point we need is (2d,−k) · Γ = (3295186,−735493) · Γ = (11, 5) · Γred. Here 2d
appears instead of d because in [72] ed ≡ 1 mod lcm(p− 1, q− 1) is taken, and in this case
gcd(p− 1, q − 1) appears to be equal to 2.

This shows that, at least in this example, the efficiency of our method is comparable
to [72], since we had to search for the numbers 11 and 5 of respectively 3.5 and 2.3 bits,
together less than 7 bits (rather than 6 bits, because we have to allow negative values for
one of the coordinates).

The fact that Verheul and van Tilborg require a computation with a complexity of
a 2r-bit exhaustive search to allow r unknown bits more than 1

4
th of N for both d and

the unknown part of d (which, in this case, are of course the same), corresponds to our
complexity results. However, it does not directly imply that their method can be used in a
partial key exposure setting. In that sense our result, with the homogeneous case being a
special case of the general case, implies the result of [72], but not the other way around. We
believe that the method of Verheul and van Tilborg can be combined with the method of
Baker and Davenport [1], for solving inhomogeneous diophantine approximation problems,
but we see no advantages above our uniform and clean lattice method.

Finally, we will show that the attacks of Wiener and Verheul/van Tilborg are provable
cases of our method.

Recall that we look for a small pair (d, k) such that

(d,−k) ·
(

C e
0 N

)
= (Cd, ed− kN) ≈ (Nβ+ 1

2 , Nβ+ 1
2).

We will argue that if d < N
1
4 (Wiener’s case), this small vector is actually the smallest

nonzero lattice vector. Since the Lagrange reduction always gives the shortest vector, we
do not have to try different values for z1, z2.

Suppose it is not the smallest vector. Then the smallest vector cannot be linearly
independent from it, for else the product of their sizes is smaller than N2β+1 < N

3
2 ,

whereas the determinant of the lattice is det(L) = CN = N
3
2 . This is a contradiction. The

other option when (Cd, ed− kN) is not the smallest vector, is that the smallest vector is

(Cx, ex− yN) = α(Cd, ed− kN), for some α ∈ [−1, 1].

58

Partial key exposure attacks on RSA 4.3 A new “2-dimensional” attack

It follows that d = 1
α
x and k = 1

α
y, and since ed− kφ(N) = 1, it must hold that

ex− yφ(N) = α.

Since the left hand side is an integer, α 6= 0, and α ∈ [−1, 1], it follows that |α| = 1.
Therefore, d = |x| and k = |y|. Hence, the shortest reduced basis vector immediately gives
us d and k. Thus, the method is clearly provable.

In the case of Verheul/van Tilborg’s attack, d = N
1
4
+ε, so

(Cd, ed− kN) ≈ (Nβ+ 1
2 , Nβ+ 1

2) = (N
3
4
+ε, N

3
4
+ε),

so this vector is not the smallest reduced vector. However, one can see that the smallest
vector must be linearly independent of it, so we know that

a−1 det(L)
1
2 ·N 3

4
+ε ≥ det(L).

It follows that a < det(L)−
1
2 N

3
4
+ε = det(L)−

1
2 Nβ+ 1

2 = N
1
2
(β+δ− 1

2
) and from the complexity

computations in the previous section, we know that this means that the search area is
O(Nβ+δ− 1

2) = O(N2ε). So one can see that in this case, one also does not depend on
Assumption 3.4.

4.3.3 Experiments for the new attack

In the following table, we show the running time of the 2-dimensional attack, for moduli N
of 2048 bits. This time includes the lattice basis reduction and trying all pairs (z1, z2) to
find p, q.

β δ Running time
0.30 0.050 1 sec.
0.30 0.100 1 sec.
0.30 0.150 1 sec.
0.30 0.200 1 sec.
0.30 0.205 2 sec.
0.30 0.210 21 min.
0.35 0.050 1 sec.
0.35 0.100 1 sec.
0.35 0.150 1 sec.
0.35 0.155 2 sec.
0.35 0.160 21 min.

β δ Running time
0.40 0.050 1 sec.
0.40 0.100 1 sec.
0.40 0.105 2 sec.
0.40 0.110 21 min.
0.45 0.050 1 sec.
0.45 0.055 2 sec.
0.45 0.060 21 min.

Table 4.1: Experimental results: 2-dimensional attack

The table shows that for β = 0.30 and δ = 0.205, our attack works in approximately
2 seconds (this is an average over 50 experiments). For ε = 0.01, the running time is still
a reasonable 21 minutes. The experiments were performed using a simple Mathematica
program that runs on a computer with Pentium III processor of 733 MHz.

59

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

Aside from the efficiency of the attack, we should also comment on the validity of our
assumption. When we are outside the regions where the known continued fractions methods
from Wiener and Verheul/van Tilborg apply, the attack depends on Assumption 3.4,

namely that the elements of Γred are all of size det(L)
1
2 . Here, we will comment on how

this assumption holds in the examples that we tested.

Let m be the maximal entry of Γred, and m = a det(L)
1
2 . We want to check that for

the matrices involved in the attack, a is close to 1. Therefore, we performed tests for
the attacks for small d in the following setup: N is a 2048-bit modulus, β ∈ [0.25, 0.5],
ε ∈ [0, 0.1], and δ = min{β, 1

2
− β + ε}.

For this case, the lattices behaved as expected. In 500 experiments, the average value
of a was approximately 1.9, and the maximal value of a was approximately 39.

4.4 New attacks up to full size exponents

In this section we present partial key exposure attacks for full size public exponent that
work up to full size private exponent. Additionally, we present a new partial key exposure
attack for full size private exponent that works up to full size public exponent. This means
that, as soon as either e or d is chosen to be small, an attacker needs only a part of d to
be able to factor N in polynomial time. As opposed to the 2-dimensional attack in the
previous section, these attacks use Coppersmith methods with bigger lattices.

Our new results on known MSBs of d for small private exponent d and full size public
exponent e are summarized in the following theorem.

Theorem 4.8 (MSB small d)
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let 0 < δ < β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with

bitsize(e) = n and bitsize(d) = βn. Given the (β − δ)n MSBs of d, N can be factored in
time polynomial in n if:

1. δ < 5
6
− 1

3

√
1 + 6β − ε, or

2. δ < 3
16
− ε and β ≤ 11

16
, or

3. δ < 1
3

+ 1
3
β − 1

3

√
4β2 + 2β − 2− ε and β ≥ 11

16
.

The proof of this theorem can be found in Section 4.4.2.

In the case of known MSBs for full size d and small e, we find an improvement of Theo-
rem 4.3 and Theorem 4.6 for e ∈ [N

1
2 , N]. Our result is stated in the next theorem.

60

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

Theorem 4.9 (MSB small e)
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let 0 < δ < 1

2
< α < 1. Let e, d satisfy ed ≡ 1 mod φ(N), with bitsize(d) = n

and bitsize(e) = αn. Given the (1− δ)n MSBs of d, N can be factored in time polynomial
in n if:

δ <
1

3
+

1

3
α− 1

3

√
4α2 + 2α− 2− ε.

The proof of this theorem can be found in Section 4.4.3.

In Figure 4.2 and 4.3 we illustrate our results on known MSBs of d. In Figure 4.2, the frac-
tion of bits required for an attack is plotted as a function of the size of d. It shows the parts
of the key space that are insecure by the attacks of Theorem 4.7 (the new 2-dimensional
attack from Section 4.3), by the new attack of Theorem 4.8, and by the attacks of Wiener
(Theorem 2.1) and Boneh/Durfee (Theorem 3.10). Figure 4.3 is a picture of the relation
between the fraction of bits of d required for an attack and the size of e, showing the results
of Boneh/Durfee/Frankel (Theorem 4.3), Blömer/May (Theorem 4.6), and the new result
of Theorem 4.9.

0.25 0.5 0.75 1
Β = logNHdL

0.25

0.5

0.75

1

HΒ-∆L�Β = fraction of

d that is sufficient

2.1
HWienerL

3.10®
HBDL

4.7

4.8.1

4.8.2

4.8.3

0.25 0.5 0.75 1
Β = logNHdL

0.25

0.5

0.75

1

HΒ-∆L�Β = fraction of

d that is sufficient

Figure 4.2: MSB attacks for small d

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

0.75

1

1-∆ = fraction of

d that is sufficient

4.3.4 4.3.3

4.3.1
4.3.2

4.6
4.9

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

0.75

1

1-∆ = fraction of

d that is sufficient

Figure 4.3: MSB attacks for small e

Our new result on known LSBs for relatively small d and full size e is as follows.

Theorem 4.10 (LSB small d)
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let 0 < δ < β < 1. Furthermore, let e, d satisfy ed ≡ 1 mod φ(N) with

bitsize(e) = n and bitsize(d) = βn. Given the (β − δ)n LSBs of d, N can be factored in
time polynomial in n when:

δ <
5

6
− 1

3

√
1 + 6β − ε.

The proof of this theorem can be found in Section 4.4.4.

61

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

Figure 4.4 illustrates our result on known LSBs. The fraction of bits required for an attack
is plotted as a function of the size of d. Figure 4.5 is a picture of the relation between the
fraction of bits required for an attack, and the size of e, showing the results of Theorem
4.2 and 4.5. Analysis of our LSB method in the case where e is small results in a bound
equivalent to the best result of [6], as described in Theorem 4.5.

0.25 0.5 0.75 1
Β = logNHdL

0.25

0.5

0.75

1

HΒ-∆L�Β = fraction of

d that is sufficient

2.1
HWienerL

3.10®
HBDL

4.7 4.10

0.25 0.5 0.75 1
Β = logNHdL

0.25

0.5

0.75

1

HΒ-∆L�Β = fraction of

d that is sufficient

Figure 4.4: LSB attacks for small d

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

0.75

1

1-∆ = fraction d

that is sufficient

4.2 HBDFL

4.5 HBML

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

0.75

1

1-∆ = fraction d

that is sufficient

Figure 4.5: LSB attacks for small e

The results in this section can be viewed as evidence that side channel attacks are
even more dangerous to RSA than we already knew. In essence, we show that there exist
partial key exposure attacks up to full size exponents, hence if either e or d is chosen to
be significantly smaller than φ(N), the system is vulnerable to this type of attacks. This
can be understood as a warning to crypto-designers to choose both private and public
exponent at random, or take sufficient countermeasures to prevent private key bits from
leaking. Now, let us discuss the attacks that lead to the results mentioned in the above
theorems.

4.4.1 Polynomials derived from the RSA key equation

Recall the RSA key equation

ed− 1 = kφ(N), where φ(N) = (p− 1)(q − 1) = N − (p + q − 1).

In our scenario, we assume that one of the exponents e and d is chosen to be small and
the other one is of full size. Hence, either e < Nα, d < φ(N), and k < ed

φ(N)
< e < Nα, or

d < Nβ, e < φ(N), and k < d < Nβ.

When MSBs of d are known, we write d = d̃ + d0, where d̃ (representing the most
significant bits of d) is known to the attacker, but d0 (representing the least significant bits
of d) is not. To make this precise, let δ be the parameter such that |d0| = |d− d̃| ≤ N δ.
For the MSB case, we can thus rewrite the RSA key equation as

e(d̃ + d0)− 1 = k(N − (p + q − 1)).

62

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

Hence, the polynomial

f(x, y, z) = ex−Ny + yz + (ed̃− 1)

has a root (x0, y0, z0) = (d0, k, p + q− 1). Then the root is ‘small’ since |x0| < X, |y0| < Y ,
and |z0| < Z for some upper bounds X, Y, Z. In the case of RSA-Small-e, we have X = N δ,

Y = Nα, Z = N
1
2 , neglecting the constants. For RSA-Small-d, the corresponding values

are X = N δ, Y = Nβ, and Z = N
1
2 .

The attacker can also compute k̃ = ed̃−1
N

as an approximation to k and set k0 = k − k̃
as the unknown part of k. It can be shown (analogous to the proof of Theorem 4.4) that

|k0| < e
φ(N)

(d̃·3N− 1
2 +d0) <

{
2Nα+δ−1 + 6Nα− 1

2 < 8Nγ, for γ = max{α + δ − 1, α− 1
2
},

N δ + 3Nβ− 1
2 < 4Nγ, for γ = max{δ, β − 1

2
}.

When we substitute the knowledge of the MSBs of k into the RSA key equation, we obtain

e(d̃ + d0)− 1 = (k̃ + k0)(N − (p + q − 1)).

Hence,

f(x, y, z) = ex−Ny + yz + k̃z + (ed̃− 1− k̃N)

has a root (x0, y0, z0) = (d0, k0, p + q − 1). With X = N δ, Y = Nγ, and Z = N
1
2 , we

have |x0| < X, |y0| < Y , and |z0| < Z. Here, the value of γ is different in the cases of
RSA-Small-e and RSA-Small-d, as we showed above.

When LSBs of d are known, the attacker knows d̄ ≡ d mod M for some M , and we
write d = d̄ + d1M , where d̄ and M are known and d1 is not. We assume that d1 ≤ N δ.
We have no approximation of k in this case, so we rewrite the RSA key equation as

e(d1M + d̄)− 1 = k(N − (p + q − 1)).

Thus,

f(x, y, z) = eMx−Ny + yz + (ed̄− 1)

has a root (x0, y0, z0) = (d1, k, p + q − 1). Then |x0| < X, |y0| < Y , and |z0| < Z, for some

X,Y, Z. For RSA-Small-e, we use X = N δ, Y = Nα, and Z = N
1
2 , and for RSA-Small-d

these values are X = N δ, Y = Nβ, and Z = N
1
2 . As before, we neglected the constants in

the definition of Y and Z, and let these constants contribute to some error term ε later.

4.4.2 Attacks for known MSBs and small d

1. Attack using no partial knowledge of k: proof of Theorem 4.8.1

We start by describing a method that finds a small root (x0, y0, z0) of f(x, y, z) = ex −
Ny + yz + (ed̃ − 1) over the integers, and prove the first result of Theorem 4.8, namely
that we have a polynomial time MSB attack when

δ <
5

6
− 1

3

√
1 + 6β − ε.

63

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

Since we have not yet given a detailed example of the general strategy for choosing the
shifts for polynomials with integer roots, let us do so now. We will show that the bound
for which the roots of a polynomial f(x, y, z) = a0 + a1x + a2y + a3yz can be found in
polynomial time is

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε,

for some τ ≥ 0 that can be optimized later.

We will use our (extended) strategy of Section 3.3.2, with extra z-shifts. First, we fix
an integer m depending on ε and a parameter t, that we will optimize later in terms of m.

We define the set S as the monomials of fm−1 plus extra shifts of z. The set M is
simply the set of all monomials that appear in xi1yi2zi3f(x, y, z) with xi1yi2zi3 ∈ S. One
can check that

xi1yi2zi3 ∈ S ⇔ i1 = 0, . . . , m− 1 ; i2 = 0, . . . , m− 1− i1 ; i3 = 0, . . . , i2 + t,

xi1yi2zi3 ∈ M ⇔ i1 = 0, . . . , m ; i2 = 0, . . . , m− i1 ; i3 = 0, . . . , i2 + t,

defines such S and M as described above.

We denote by lj the largest exponent of xj that appears in the monomials of S,
i.e. l1 = l2 = m − 1 and l3 = m − 1 + t. We have W = ‖f(xX, yY, zZ)‖∞ and
R = (XY)m−1Zm−1+tW .

In order to work with a polynomial with constant term 1, we define

f ′(x, y, z) ≡ a−1
0 f(x, y, z) mod R = 1 + ax + by + cyz.

Next, we define the shift polynomials

g(x, y, z) := xi1yi2zi3f ′(x, y, z)Xm−i1Y m−i2Zm+t−i3 , for xi1yi2zi3 ∈ S,

g′(x, y, z) := xi1yi2zi3R , for xi1yi2zi3 ∈ M\S,

and let the coefficient vectors of g(x1X1, . . . xvXv) and g′(x1X1, . . . xvXv) form a lattice
basis of a lattice L.

By the theory in Section 3.3.2, the following ordering of the monomials of S gives us a
triangular matrix describing the lattice. We say that

xi1
1 · . . . · xiv

v < x
i′1
1 · . . . · xi′v

v if
∑

ij <
∑

i′j.

If
∑

ij =
∑

i′j, then we use the lexicographical ordering. As a small example, we give the
matrix corresponding to m = 2, t = 1. We have divided every row in the matrix by XY Z2

to get a cleaner view. The result is in Figure 4.6.

64

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

1 x y z xz yz yz2 x2 xy xyz y2 y2z x2z xyz2 y2z2 y2z3

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 aX bY cY Z
1 aX bY cY Z

1 aX bY cY Z
1 aX bY cY Z

1 bY aX cY Z
1 aX bY cY Z

1 aX bY cY Z

WX2

WXY
WXY Z

WY 2

WY 2Z
WX2Z

WXY Z2

WY 2Z2

WY 2Z3

Figure 4.6: Example: Matrix for m = 2, t = 1

From Section 3.3.2, we know that

Xs1Y s2Zs3 < W sW−ε, for sj =
∑

xi1yi2zi3∈M\S
ij , and sW = |S|.

suffices for the polynomials r1, r2 corresponding to the smallest vectors in the reduced
lattice basis of L to satisfy ri(x

(0)
1 , . . . , x

(0)
v) = 0. Under Assumption 3.7, the resultant

computations of f , r1, and r2 will reveal the root.

With the given definitions for S and M , we find the asymptotic bound

X
1
6
m3(1+3τ)+o(m3)Y

1
6
m3(2+3τ)+o(m3)Z

1
6
m3(1+3τ+3τ2)+o(m3) < W

1
6
m3(1+3τ)+o(m3),

which reduces to

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε,

for m →∞, if we let all terms of order o(m3) contribute to ε.

Finally, we come to the result of our partial key exposure attack on RSA-Small-d using
f(x, y, z) = ex − Ny + yz + (ed̃ − 1). In our case, X = N δ, Y = Nβ, Z = N

1
2 and

W = max{eX, NY, Y Z, R} ≥ NY = N1+β. Hence, the asymptotic bound to satisfy is

δ(1 + 3τ) + β(2 + 3τ) +
1

2
(1 + 3τ + 3τ 2) < (1 + β)(1 + 3τ),

65

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

or equivalently

3τ 2 + 3τ(2δ − 1) + (2δ + 4β − 1) < 0.

We find an optimal value τ = 1
2
− δ, which implies δ < 5

6
− 1

3

√
1 + 6β. Thereby, we have

derived the result of Theorem 4.8.1.

2. Attack using partial knowledge of k: proof of Theorem 4.8.2 and 4.8.3

We will now show how to obtain the second and third result mentioned in Theorem 4.8,
namely that we have a polynomial time MSB attack whenever

δ <
3

16
− ε and β ≤ 11

16
, or δ <

1

3
+

1

3
β − 1

3

√
4β2 + 2β − 2− ε and β ≥ 11

16
.

For the situation where we use information on MSBs of d to get an approximation k̃ of k,
we want to find a small root (x0, y0, z0) of the polynomial

f(x, y, z) = ex−Ny + yz + k̃z + (ed̃− 1− k̃N).

We will use the extended strategy as described in Section 3.3.2 with extra shifts of y. For a
polynomial f(x, y, z) = a0 +a1x+a2y+a3z+a4yz, the sets S and M can then be described
by

xi1yi2zi3 ∈ S ⇔ i1 = 0, . . . , m− 1 ; i2 = 0, . . . , m− 1− i1 + t ;
i3 = 0, . . . , m− 1− i1

xi1yi2zi3 ∈ M ⇔ i1 = 0, . . . , m ; i2 = 0, . . . , m− i1 + t ; i3 = 0, . . . , m− i1

for fixed m (depending on ε) and some t = τm that will be optimized later.
Substituting this in bound (3.7), we obtain

X2+3τY 3+6τ+3τ2

Z3+3τ < W 2+3τ−ε.

In our case, we have X = N δ, Y = Nγ, with γ = max{δ, β − 1
2
}, and Z = N

1
2 . Also,

W = max{eX, NY, Y Z, k̃Z, R} ≥ NY = N1+γ. The optimal value τ =
1
2
−δ−γ

2γ
leads to the

condition

δ <
1

3
γ +

1

2
− 1

3

√
4γ2 + 6γ.

If γ = δ, this implies

δ <
3

16
.

Note that this bound is only valid if max{δ, β − 1
2
} = δ, which implies that β ≤ 11

16
.

If γ = β − 1
2
, we get

δ <
1

3
+

1

3
β − 1

3

√
4β2 + 2β − 2 , valid for β ≥ 11

16
.

This concludes the proof of Theorem 4.8.

66

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

4.4.3 Attacks for known MSBs and small e

Many users of RSA choose a small public exponent e. Therefore, we now let e = Nα

and d < φ(N) and investigate the possibilities for new partial key exposure attacks for
RSA-Small-e. The best result in this situation, as mentioned in Theorem 4.9, is that we
obtain a polynomial time MSB attack whenever

δ <
1

3
+

1

3
α− 1

3

√
4α2 + 2α− 2− ε for α >

1

2
.

We can again use the polynomial of the attack without partial knowledge of k, that
is, f(x, y, z) = ex − Ny + yz + (ed̃ − 1), now with X = N δ, Y = Nα and Z = N

1
2 . We

will substitute all this, and W = N1+α in the bound that we obtained for this polynomial,
namely

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε.

As this case is completely similar to the case of small d, we find the bound

δ <
5

6
− 1

3

√
1 + 6α− ε.

This result only holds for α > 1
2
. In the case that α < 1

2
, we know from Theorem 4.4 that

we can assume that k is known. Hence, the polynomial to be analyzed becomes bivariate.
Since our attack using no partial knowledge of k obtains a bound inferior to the one

using the approximation of k that can be derived, it is not mentioned in Theorem 4.9. This
brings us to the description of the attack using partial information on k.

Attack using partial knowledge of k: proof of Theorem 4.9

When we use partial information on k, where k is partly unknown (so α > 1
2
), we can use

f(x, y, z) = ex−Ny + yz + k̃z + (ed̃− 1− k̃N).

We have X = N δ, Y = Nγ, with γ = max{α + δ − 1, α − 1
2
}, and Z = N

1
2 . Using

W = N1+γ, we get the same condition as in the previous paragraph, namely

δ <
1

3
γ +

1

2
− 1

3

√
4γ2 + 6γ − ε.

We analyze this for two possibilities of γ.
If we substitute γ = α + δ − 1 (in other words, we assume δ > 1

2
), we obtain the

condition

δ <
3 + 4α− 4α2

16α
− ε.

However, for α > 1
2
, δ < 3+4α−4α2

16α
< 1

2
, so we get no result.

If γ = α− 1
2
, we find

δ <
1

3
+

1

3
α− 1

3

√
4α2 + 2α− 2− ε.

This concludes the proof of Theorem 4.9.

67

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

4.4.4 Attack for known LSBs and small d

In this section, we will show how to obtain the result of Theorem 4.10, namely that we
have a polynomial time LSB attack whenever

δ <
5

6
− 1

3

√
1 + 6β − ε.

Attack description: proof of Theorem 4.10

Polynomial f(x, y, z) = eMx−Ny +yz +(ed̄−1) has the same monomials as in the MSB-
attack where no partial knowledge of k was used. So, we can directly apply the known
analysis for a polynomial with monomials 1, x, y, yz. We use

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ−ε,

on X = N δ, Y = Nβ, Z = 3N
1
2 and W = max{eMX, NY, Y Z,R} ≥ NY = N1+β. This

implies

δ <
5

6
− 1

3

√
1 + 6β.

This concludes the proof of Theorem 4.10.

If we adapt the LSB attack for the situation when e is not of full size, we get exactly
the result from Blömer and May in Theorem 4.5.

4.4.5 Experiments for the new attacks

We state some experimental results to give an idea of the performance of our methods.
In the following three examples, N ≈ 21024. The experiments are performed on a server
containing two Pentium III processors of 1000 Mhz, and all the lattice basis reductions are
done using Shoup’s NTL [66].

For our attack on small d without using partial knowledge of k, a typical case is β = 0.3
and δ = 0.21 (e.g. 70% of d is unknown). An attack using m = 3, t = 1 involved a 10
minute reduction of the 30-dimensional lattice.

We performed an attack on small d using partial knowledge of k for β = 0.6, δ = 0.13
(e.g. 22% of d is unknown), with m = 3, t = 2. The 50-dimensional lattice took 31

4
hours

to reduce.
We performed the attack on small e using partial knowledge of k for α = 0.7, δ = 0.08

(e.g. 8% of d is unknown), using m = 3, t = 2. The reduction of the 50-dimensional lattice
took 23

4
hours.

More experimental results are included in the following tables, but now for a modulus
length of 256 bits. As the bounds on δ stated in the theorems are asymptotic bounds, the
goal of the tables is to provide some insight of what values of δ our attacks can realize in
practice. Note that the LLL reduction time for a larger modulus length is longer, so the
attacks will take longer when performed on N ≈ 21024 or N ≈ 22048.

68

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

β δ m = 2 m = 3
asympt. t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

0.30 0.28 0.19 0.19 0.19 0.19 0.21 0.21
0.35 0.25 0.13 0.14 0.14 0.14 0.16 0.16
0.40 0.22 0.09 0.11 0.11 0.09 0.14 0.15
0.45 0.19 0.04 0.10 0.10 0.05 0.12 0.12
0.50 0.17 0 0.08 0.09 0 0.10 0.11
0.55 0.14 0 0.08 0.08 0 0.09 0.11
0.60 0.12 0 0.04 0.04 0 0.06 0.10
0.65 0.10 0 0 0 0 0 0.06
0.70 0.07 0 0 0 0 0 0.01
0.75 0.05 0 0 0 0 0 0
0.80 0.03 0 0 0 0 0 0
0.85 0.01 0 0 0 0 0 0

Dimension: 10 16 22 20 30 40
LLL (sec): 1 2 8 3 25 100

Table 4.2: Experiments for small d, not using partial knowledge of k

β δ m = 2 m = 3
asympt. t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.30 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.19
0.35 0.19 0.15 0.16 0.16 0.16 0.16 0.16 0.16
0.40 0.19 0.12 0.12 0.12 0.12 0.14 0.15 0.15
0.45 0.19 0.10 0.11 0.12 0.12 0.12 0.13 0.13
0.50 0.19 0.08 0.11 0.12 0.12 0.12 0.13 0.13
0.55 0.19 0.08 0.11 0.12 0.12 0.11 0.13 0.13
0.60 0.19 0.05 0.11 0.11 0.11 0.11 0.12 0.13
0.65 0.19 0 0.05 0.06 0.06 0.05 0.08 0.10
0.70 0.18 0 0 0 0 0 0.04 0.05
0.75 0.14 0 0 0 0 0 0 0
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50
LLL (sec): 1 7 17 40 26 180 480

Table 4.3: Experiments for small d, using partial knowledge of k

When we are in the area of the key space where the 2-dimensional attack applies, this
method is clearly faster, and should be preferred over the attacks using larger lattices.

69

Partial key exposure attacks on RSA 4.4 New attacks up to full size exponents

α δ m = 2 m = 3
asymptotic t = 0 t = 1 t = 2 t = 3 t = 0 t = 1 t = 2

0.50 0.50 0.25 0.33 0.38 0.40 0.32 0.37 0.41
0.55 0.33 0.17 0.21 0.23 0.25 0.21 0.23 0.24
0.60 0.27 0.09 0.14 0.17 0.18 0.13 0.16 0.19
0.65 0.22 0.02 0.07 0.10 0.10 0.07 0.11 0.13
0.70 0.18 0 0.02 0.03 0.04 0.02 0.04 0.08
0.75 0.14 0 0 0 0 0 0.01 0.02
0.80 0.11 0 0 0 0 0 0 0
0.85 0.08 0 0 0 0 0 0 0
0.90 0.05 0 0 0 0 0 0 0
0.95 0.03 0 0 0 0 0 0 0

Dimension: 14 20 26 32 30 40 50
LLL (sec): 1 5 13 40 33 180 520

Table 4.4: Experiments for small e, using partial knowledge of k

Concerning the choice of t, recall that t = τm, and that we use τ = 1
2
− δ to obtain the

asymptotic result of our RSA-Small-d attack using no partial knowledge of k. This explains
that for m = 2 in Table 4.2, a value of t larger than 1 gives no significant improvement,
but for m = 3, t = 2 may give a better result when the bound on δ is ‘low’. For the

attacks using partial knowledge of k, the optimal value of τ is τ =
1
2
−δ−γ

2γ
. This explains

for example, that when e = Nα with α close to 1
2
, a larger value of t gives a better bound

on δ in the experiments (as can be seen in Table 4.4).

After these experiments, we are now ready to comment on Assumption 3.7. Let
r1(x, y, z) and r2(x, y, z) be polynomials that correspond to the smallest LLL reduced
vectors in our method. If we assume that Howgrave-Graham’s bound is satisfied for both,
then r1(x0, y0, z0) = r2(x0, y0, z0) = 0. Now Assumption 3.7 does not hold when the re-
sultant computations with r1 and r2 yield the zero polynomial. Therefore, we performed
some tests to see how often this occurs. We found that for small δ, approximately 0.1%
of pairs (r1, r2) the heuristic failed. However, Bauer and Joux [2] recently showed that for
larger δ, the heuristic fails more often. For example, let us look at the attack on small d
without using knowledge of k (Table 4.2). In the attack for m = 2, t = 1, β = 0.35 and
δ = 0.10, the heuristic fails in about 20% of the cases. This does not mean that the whole
attack will fail in these cases. The method finds about 10 polynomials ri that are small
enough to have the root over the integers, and if r1 and r2 are algebraically dependent, we
just try other combinations until the resultant method succeeds. In Section 5.3, we show a
relaxation of Assumption 3.7 with the same idea. For the attack to succeed, we only need
two independent ri’s that satisfy ri(x0, y0, z0) = 0, they do not have to be r1 and r2. For a
provable way to find a third independent polynomial r2 from f and r1 in the case of this
attack, we refer to the paper of Bauer and Joux [2].

70

Partial key exposure attacks on RSA 4.5 Tabular overview

Experiments also show that the theoretical bound under which our methods works,

det(L) ≤ (2
−ω
4

1√
ω

)ω−1Rω−1,

is far too strict. It would imply that for m ∈ {2, 3}, the method will never work, which

clearly contradicts the practice. This is both due to the term (2
−ω
4

1√
ω
)ω−1, when it is known

that LLL reduction achieves much better bounds in practice, and to the fact that we use
the LLL bound for the second smallest reduced vector. In practice, we experienced that
our method works until det(L) comes close to Rω (the upper bound for the first reduced
vector to be small enough, omitting the terms that do not depend on N).

Apparently, the lattice L satisfies Assumption 3.3 in this case. Because the lattice is
balanced, all reduced vectors (especially the smallest vectors) have a norm of approximately

det(L)
1
ω and the bound det(L)

1
ω < R describes the cases for which the attack works in

practice.

4.5 Tabular overview

The following tables include all known and new partial key exposure attacks on RSA-
Small-e and RSA-Small-d respectively.

Type of attack Attack bound Reference

known MSBs δ < 1− α and α ∈ (1
4
, 1

2
) Thm. 4.3.1/4.3.2

δ < α and α ≤ 1
2

Thm. 4.3.3

δ < 1
4

and α ≤ 1
2

Thm. 4.3.4

δ < 1
8
(5− 2α−√36α2 + 12α− 15)− ε and Thm. 4.6

α ∈ (1
2
,
√

6−1
2

)

δ < 1
3

+ 1
3
α− 1

3

√
4α2 + 2α− 2− ε and Thm. 4.9

α ∈ (1
2
, 1)

known LSBs δ < 3
4

and e = poly(n) Thm. 4.2

δ < 5
6
− 1

3

√
1 + 6α− ε and α ∈ (0, 7

8
) Thm. 4.5

Table 4.5: Partial key exposure attacks for RSA-Small-e

71

Partial key exposure attacks on RSA 4.5 Tabular overview

Type of attack Attack bound Reference

no bits necessary β < 0.25 Wiener
Thm. 2.1

β < 0.292− ε Boneh/Durfee
Thm. 3.10

known MSBs/LSBs δ < 1
2
− β Thm. 4.7

known MSBs δ < 5
6
− 1

3

√
1 + 6β − ε Thm. 4.8.1

δ < 3
16
− ε and β ≤ 11

16
Thm. 4.8.2

δ < 1
3

+ 1
3
β − 1

3

√
4β2 + 2β − 2− ε and β > 11

16
Thm. 4.8.3

known LSBs δ < 5
6
− 1

3

√
1 + 6β − ε Thm. 4.10

Table 4.6: Partial key exposure attacks for RSA-Small-d

72

5
Attacks on RSA-CRT variants

In this chapter we discuss the known attacks on RSA-CRT variants. Moreover, we discuss a
new attack on CRT-Small-dp, dq (that also affects the security of CRT-BalancedExponents),
and a new attack on CRT-Qiao&Lam.

Section 5.3 is based on [37] and Section 5.4 is based on [38], both of which are joint
papers with Alexander May.

5.1 Introduction

As we have mentioned before, in many implementation proposals of the RSA cryptosystem,
either the public exponent e or the private exponent d is chosen to be small. Since the
attacks of Wiener [75] and Boneh and Durfee [10] on RSA-Small-d, we know that choosing a
small d can be dangerous. As an alternative approach, Wiener proposed to use the Chinese
Remainder Theorem (CRT) for decryption/signing, and ‘small private CRT-exponents’
instead of a small private exponent. The new decryption/signing process of RSA, as
proposed by Quisquater and Couvreur in [61] then works in the following way:

• ‘split’ the private exponent d into dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1),

• decrypt/sign by first computing

mp ≡ cdp mod p and mq ≡ cdq mod q,

and then using CRT to compute the unique value m modulo N such that

m ≡ mp mod p and m ≡ mq mod q.

RSA using CRT is specifically useful in time-critical applications, for instance for sign-
ing procedures on smartcards. As for the security of RSA variants using CRT, there
exists a meet-in-the-middle attack enabling the adversary to factor N in time and space
Õ(min{√dp,

√
dq}), which is exponential in the bitsize of the minimum of dp and dq,

see [8, 51]. We use the “soft-O” notation here, which ignores the logarithmic factors.

Let us briefly recall some RSA-CRT variants, for which we shall discuss the known
attacks in Section 5.2, and new attacks on some of these variants in Section 5.3 and 5.4.

73

Attacks on RSA-CRT variants 5.1 Introduction

Standard RSA-CRT (“CRT-Standard”):

In all RSA-CRT variants, the RSA-CRT parameters e, dp, dq, p, q satisfy

edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1).

If all parameters are chosen generically, then we have

edp = 1 + kp(p− 1) and edq = 1 + kq(q − 1),

for e ≈ N, p ≈ q ≈ dp ≈ dq ≈ N
1
2 , kp ≈ kq ≈ N .

RSA-CRT with small public exponent e (“CRT-Small-e”) :

As in standard RSA, it is possible to choose a small e, after which the Extended Euclidean
Algorithm finds the corresponding d, which in turn is then split up in dp and dq. If one
chooses p and q first at random, and then a small e, then the private CRT-exponents dp

and dq will be about as long as p and q in general. So, we have

e ≈ Nα, p ≈ q ≈ dp ≈ dq ≈ N
1
2 , kp ≈ kq ≈ Nα, for α < 1.

RSA-CRT with small private CRT-exponents dp, dq (“CRT-Small-dp, dq”) :

This variant was proposed by Wiener in [75] as a possible alternative to using a small
decryption exponent d. In this case, one assumes that the decryption/signing time is
critical. First one picks p and q as random primes of bitsize 1

2
n, and dp and dq as random

integers of a certain small bitsize such that they are coprime to p− 1 and q− 1. Then one
can compute d smaller than φ(N) such that d ≡ dp mod (p − 1) and d ≡ dq mod (q − 1).
From this d, one can compute the corresponding e as usual.

Hence, the setting is: e is full size, p and q are balanced, and dp and dq are balanced
but significantly smaller than p and q. So, we have

e ≈ N, p ≈ q ≈ N
1
2 , dp ≈ dq ≈ Nβ, kp ≈ kq ≈ Nβ+ 1

2 , for β <
1

2
.

It has been an open question since Wiener’s work whether or not there exist polynomial
time attacks on RSA-CRT with small CRT-exponents. In Section 5.3, we give an affirma-
tive answer to this question, when we describe a new attack that works for β < 0.0734.

RSA-CRT with unbalanced primes (“CRT-UnbalancedPrimes”) :

This variant was studied by May [52], who found the first polynomial time attacks on an
RSA-CRT case. In this scenario, the idea is to minimize the cost of the decryption mod q
by taking a small q, and to minimize the cost of the decryption mod p by taking a small dp.
Hence, the setting is: e is full size, p and q are unbalanced (where q is the smaller prime),
and dp is significantly smaller than p. So,

e ≈ N, p ≈ N1−γ, q ≈ Nγ, dp ≈ Nβ, dq < Nγ, kp ≈ Nβ+γ, kq ≈ N,

for γ < 1
2

and β < 1− γ.

74

Attacks on RSA-CRT variants 5.1 Introduction

RSA-CRT with small e and small dp and dq (“CRT-BalancedExponents”) :

This variant, proposed by Galbraith/Heneghan/McKee [28] and Sun/Wu [70], balances the
cost of decryption and encryption, by enabling an implementor of the key generation to
choose e and dp and dq smaller than standard. In Section 2.2, we discussed a possible key
generation method for this variant.

The general setting is: e is relatively small, p and q are balanced, and dp and dq are
balanced but smaller than p and q. So,

e ≈ Nα, p ≈ q ≈ N
1
2 , dp ≈ dq ≈ Nβ, kp ≈ kq ≈ Nα+β− 1

2 , for α < 1 and β <
1

2
.

In the papers [28] and [70], the authors describe various attacks, and propose parameters
for which the mentioned attacks do not work. A new attack by Bleichenbacher and May [4]
made the authors of the proposals change their parameter choices [27, 69]. Our new attack,
described in Section 5.3, leads to another part of the key space that should be considered
unsafe.

RSA-CRT with small difference dp − dq (“CRT-Qiao&Lam”) :

Qiao and Lam [60] proposed to use CRT-Small-dp, dq and to use dq = dp − 2. In this way,
one profits from the fast decryption method of CRT-Small-dp, dq, while one only has to
store one of the two private CRT-exponents. In Section 5.4 we describe a new attack on
this variant.

If we now summarize the five possible ways to speed up either encryption/verifying or
decryption/signing (or both), the general setting is as follows.

{
edp = 1 + kp(p− 1),
edq = 1 + kq(q − 1),

with

e ≈ Nα for 0 < α ≤ 1
p ≈ N1−γ for 0 < γ ≤ 1

2

q ≈ Nγ

dp ≈ Nβ for 0 < β ≤ 1− γ

dq ≈ Nκ for κ =

{
β, if γ = 1

2

γ, if γ < 1
2

kp ≈ Nα+β+γ−1

kq ≈ Nα+κ−γ

The default values for the parameters are α = 1, γ = β = κ = 1
2
, and for special

RSA-CRT settings described above, the parameters are as below.

75

Attacks on RSA-CRT variants 5.2 Known attacks

CRT-Small-e: α < 1, γ = β = κ = 1
2
.

CRT-Small-dp, dq: α = 1, γ = 1
2
, β = κ < 1

2
.

CRT-UnbalancedPrimes: α = 1, γ = κ < 1
2
, β < 1− γ.

CRT-BalancedExponents: α < 1, γ = 1
2
, β = κ < 1

2
.

CRT-Qiao&Lam: see CRT-Small-dp, dq.

In the next section we will look at the known attacks on the RSA-CRT variants. We will
give short descriptions of each attack in the most general setting possible, and explore for
which values of the parameters (and therefore for which variants) the attacks work.

5.2 Known attacks

In this section, we briefly discuss the attacks proposed in the literature on the subject. We
give the theorems in the general setting in order to see if an attack that is designed for one
CRT variant may be applicable to another CRT variant.

It is important to note that α + β + γ − 1 ≥ 0 and α + κ− γ ≥ 0, since kp and kq are
positive integers. In the CRT-BalancedPrimes variant, it may happen that α + β − 1

2
≈ 0,

which means that kp and kq are very small, and must be assumed to be public knowledge.
Since it makes no sense to treat kp and kq as variables in an equation if they are known, we
make a distinction between attacks with unknown kp, kq, and attacks with known kp, kq.

First, we start with the attacks on RSA-CRT variants where kp and kq are not known.
To introduce the notation for all of these attacks, we use the following condition.

Condition (*) (Notation for the known attacks on RSA-CRT variants)
Let N = pq be an n-bit RSA modulus. Let 0 < α ≤ 1, 0 < γ ≤ 1

2
, 0 < β ≤ 1

2
, and

0 < κ ≤ 1
2

such that κ = γ if γ < 1
2

and κ = β if γ = 1
2
. Let p, q be primes of bitsize

(1 − γ)n and γn. Furthermore, let e, dp, dq satisfy edp ≡ 1 mod (p − 1) and edq ≡ 1
mod (q − 1) with bitsize(e) = αn, bitsize(dp) = βn, and bitsize(dq) = κn.

The following attack was originally meant for the CRT-UnbalancedPrimes setting.

Theorem 5.1 (May, [52])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Consider an RSA-CRT instance satisfying (*). Then N can
be factored in time polynomial in n when:

β <
1

2
(2− 3γ + γ2 − α)− ε.

76

Attacks on RSA-CRT variants 5.2 Known attacks

Proof.
For the attack, May notices that edp + (kp − 1) ≡ 0 mod p, hence

fp(x, y) = ex− y has a small root (dp, kp − 1) modulo p.

In this thesis, we have not discussed Coppersmith methods for small roots modulo an
unknown modulus p, of which one knows a multiple N . However, these methods exist
(see [13, 54]), and May shows that using the shifts

gjk(x, y) = xjNmax{0,τm−k}fk
p (x, y), for k = 0, . . . ,m− 1, j = m− k − 1,

one finds the bound

(XY)
1
2 < pτN− 1

2
τ2−ε.

For p = N1−γ, X = Nβ, Y = Nα+β+γ−1 the optimal value of τ is τ = 1− γ. It follows that

β <
1

2
(2− 3γ + γ2 − α)− ε.

2

For CRT-UnbalancedPrimes, the bound of Theorem 5.1 reduces to May’s result [52]

β <
1

2
(1− 3γ + γ2)− ε.

For CRT-BalancedExponents, it follows that

β <
3

8
− 1

2
α− ε

is unsafe. CRT-Small-e and CRT-Small-dp, dq are not affected.

The second attack by May, a result described in the following theorem, was also origi-
nally meant for the setting of CRT-UnbalancedPrimes.

Theorem 5.2 (May, [52])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Consider an RSA-CRT instance satisfying (*). Then N can
be factored in time polynomial in n when:

β < 1− 2

3
γ − 2

3

√
γ2 + 3γα− ε.

Proof.
To obtain this result, May looks at the equation edp = 1 + kp(p− 1) modulo e. Hence,

kp(p− 1) + 1 ≡ 0 mod e.

77

Attacks on RSA-CRT variants 5.2 Known attacks

If this is multiplied by q, then the result is

kp(N − q) + q ≡ 0 mod e, or equivalently

(kp − 1)N − (kp − 1)q + N ≡ 0 mod e.

Thus, fe(x, y) = x(N − y) + N has a small root (x0, y0) = (kp − 1, q) modulo e. This is a
polynomial à la Boneh/Durfee (see Section 3.3.1), and the known bound is

X2+3τY 1+3τ+3τ2

< e1+3τ−ε.

For X = Nα+β+γ−1, Y = Nγ, the optimal τ = 1−2γ−β
2γ

leads to the bound

β < 1− 2

3
γ − 2

3

√
γ2 + 3γα− ε.

2

For CRT-UnbalancedPrimes, the bound of Theorem 5.2 reduces to

β < 1− 2

3
γ − 2

3

√
γ2 + 3γ − ε.

For the setting of CRT-BalancedExponents, it leads to the bound

β <
2

3
− 1

3

√
1 + 6α− ε.

This last bound implies that α+β < 1
2
, so therefore it has no consequences for the security

of CRT-BalancedExponents.

The last attack that was proposed for the CRT-UnbalancedPrimes case is by Bleichen-
bacher and May.

Theorem 5.3 (Bleichenbacher/May, [4])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Consider an RSA-CRT instance satisfying (*). Then N can
be factored in time polynomial in n when:

β <
1

3
(3− 2γ − γ2 −

√
12αγ − 12αγ2 + 4γ2 − 5γ3 + γ4)− ε.

Proof sketch.
Bleichenbacher and May improved the attack of Theorem 5.2 in their paper [4]. They
observe that the shifts that are used for polynomial fe(x, y) = x(N − y) + N , namely

gijk(x, y) = xiyjfk(x, y)em−k,

contains many powers of y. The y0 that one is looking for, namely y0 = q, satisfies y0·p = N .
Therefore, Bleichenbacher and May introduce a new variable z for p, and use the shifts

gijk(x, y, z) = xiyjzsfk(x, y)em−k,

78

Attacks on RSA-CRT variants 5.2 Known attacks

for a value of s that has to be optimized. Moreover, since y0 · z0 = N , they replace every
occurrence of yz by N . For a detailed analysis of the determinant of the lattice that follows,
and a proof of this theorem, we refer to [4].

2

For CRT-UnbalancedPrimes, the above result reduces to

β <
1

3
(3− 2γ − γ2 −

√
12γ − 8γ2 − 5γ3 + γ4)− ε.

For CRT-BalancedExponents, it leads to an attack bound

β <
7

12
− 1

12

√
7 + 48α− ε.

Let us now move on to the known attacks that were designed for CRT-BalancedExponents.
The following attack features in both proposals of the CRT-BalancedExponents case.

Theorem 5.4 (GHM and SW, [28, 70])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Consider an RSA-CRT instance satisfying (*). Then N can
be factored in time polynomial in n when:

β < 1 + γ − 2κ− 2α− ε.

Proof.
For this attack, the equations

kpp ≡ kp − 1 mod e and kqq ≡ kq − 1 mod e

are multiplied with each other. This results in

kpkq(N − 1) + kp + kq − 1 ≡ 0 mod e,

which means that the polynomial fe(u, v) = u(N−1)+v has a small root (kpkq, kp +kq−1)
modulo e. This is a simple case of a polynomial where the total degree is 1 (a specific case of
the “generalized lower triangle”, treated in Section 3.3.1). The bound that can be derived
from the discussion of generalized lower triangles in Section 3.3.1 is

UV < e1−ε.

Substituting U = N2α+β+κ−1 and V = Nα+κ−γ, one obtains

β < 1 + γ − 2κ− 2α− ε.

2

79

Attacks on RSA-CRT variants 5.2 Known attacks

For {γ = 1
2
, κ = β}, it follows that the above attack works for

β <
1

2
− 2

3
α− ε

which is only applicable in the CRT-BalancedExponents setting. For {γ < 1
2
, κ = γ}, it

gives

β < 1− 2α− γ − ε,

which doesn’t affect CRT-UnbalancedPrimes.

The attack by Bleichenbacher and May originally meant for CRT-BalancedExponents is
described in the following theorem.

Theorem 5.5 (Bleichenbacher/May, [4])
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Consider an RSA-CRT instance satisfying (*). Then N can
be factored in time polynomial in n when:

β <
1

2
(1 + 2γ − 2α− 3κ)− ε.

Proof.
In the latest result on CRT-BalancedExponents, Bleichenbacher and May follow the stra-
tegy of Theorem 5.4, except that they do not look at the equations modulo e. That is,
they multiply the equations

edp + kp − 1 = kpp and edq + kq − 1 = kqq

with each other, which results in the equation

e2dpdq + edp(kq − 1) + edq(kp − 1)− (N − 1)kpkq − (kp + kq − 1) = 0.

Then, (x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) = (dpdq, dp(kq − 1) + dq(kp − 1), kpkq, kp + kq − 1) is a root of

f(x1, x2, x3, x4) = e2x1 + ex2 − (N − 1)x3 − x4 = 0.

This is simply a linear polynomial, whose known bound is

X1X2X3X4 < W 1−ε,

for W = N2α+β+κ, X1 = Nβ+κ, X2 = Nα+β+κ−γ, X3 = N2α+β+κ−1, X4 = Nα+κ−γ. This
immediately leads to the bound given in this theorem.

2

For {γ = 1
2
, κ = β}, it follows that the attack works for

β <
2

5
− 2

5
α− ε

80

Attacks on RSA-CRT variants 5.2 Known attacks

which is only applicable in the CRT-BalancedExponents setting. For {γ < 1
2
, κ = γ}, it

gives

2α + 2β + γ < 1,

which doesn’t affect the CRT-UnbalancedPrimes case.

Having discussed many attacks for the RSA-CRT cases with unknown kp, kq, we now
summarize the best known result for the case that kp and kq are known.

Theorem 5.6 (GHM, [28])
Let N = pq be an n-bit RSA modulus, where p and q are primes of equal bitsize. Let
0 < α < 1 and 0 < β ≤ 1

2
. Furthermore, let e, dp, dq satisfy edp = 1 + kp(p − 1)

and edq = 1 + kq mod (q − 1) with bitsize(e) = αn, and bitsize(dp) = bitsize(dq) = βn.
Suppose that kp and kq are very small, that is α + β − 1

2
≈ 0. Then N can be factored in

time polynomial in n when:

α >
1

4
.

Proof.
The attack originates from Coppersmith’s attack that uses partial knowledge of p. Namely,
when kp and kq are known, then one knows

p ≡ k−1
p (kp − 1) mod e and q ≡ k−1

q (kq − 1) mod e.

When e > N
1
4 , then Theorem 4.1 says that one can find p.

2

0.25 0.5
Γ = logNHqL

0.25

0.5

0.75

1

Β = logNHdpL

5.1
5.3

5.2

0.25 0.5
Γ = logNHqL

0.25

0.5

0.75

1

Β = logNHdpL

Figure 5.1: CRT-UnbalancedPrimes

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

Β = logNHdpL

5.5

5.4

5.3 ®

5.1 ®

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

Β = logNHdpL

Figure 5.2: CRT-BalancedExponents

81

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

This concludes the discussion of all known polynomial time attacks on CRT variants. Note
that up to now, there only exist polynomial time attacks on CRT-UnbalancedPrimes and
CRT-BalancedExponents. Figure 5.1 and 5.2 give an overview of the attacks on these
variants. The numbers in the figures refer to the respective theorems.

Besides the ‘normal’ polynomial time attacks on RSA-CRT variants, there also exist
partial key exposure attacks. The known partial key exposure attacks from Blömer and
May [6] on CRT-Small-e are summarized in the next theorem. For a proof of this theorem,
we refer to [6].

Theorem 5.7 (Blömer/May, [6])
For every ε > 0, there exists an integer n0 such that for every n > n0, the following holds:
Let N = pq be an n-bit RSA modulus, where p and q are primes of equal bitsize. Let
0 < α < 1, 0 < β ≤ 1

2
, and 0 < δ < β. Furthermore, let e, dp, dq satisfy edp = 1+kp(p−1)

and edq = 1 + kq mod (q − 1) with bitsize(e) = αn.

1. Suppose an attacker knows MSBs of dp, and suppose the unknown LSB-part of dp is
of size N δ. Then N can be factored in time polynomial in n when:

δ <
1

4
− α− ε.

2. Suppose an attacker knows LSBs of dp, and suppose the unknown MSB-part of dp is
of size N δ. Moreover, suppose that e is of size poly(n) such that all possible kp can be
tried out in polynomial time. Then N can be factored in time polynomial in n when:

δ <
1

4
− ε.

5.3 A new attack on CRT-Small-dp, dq

In this section, we discuss a new attack on CRT-Small-dp, dq. Recall that all attacks in the
previous section were not applicable in the standard RSA case with small CRT-exponents
dp and dq, that is, when p and q are balanced and e is full size. Here, we describe a way
to extend one of the attacks of Bleichenbacher/May [4] such that it also works in the case
of CRT-Small-dp, dq. This leads to the first polynomial time attack on standard RSA with
small private CRT-exponents.

The new attack involves a small root (x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) of a polynomial f . As opposed

to the other attacks in this thesis, we will use an alternative way of extracting a common
root of a set of polynomials here. We use Gröbner bases instead of resultants. Because
this alternative method also involves a new assumption, we shall explain the details first
before we state the result of the new attack.

82

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

Extracting the common root:

Assume that we want to retrieve a common root from four polynomials f , r1, r2, r3 in four
variables. Usually, one uses resultants to eliminate variables one by one until one obtains
a univariate polynomial res6(x1) that has x

(0)
1 as a root.

res1 = Resx4(f, r1)
res4 = Resx3(res1, res2)

res2 = Resx4(f, r2) res6 = Resx2(res4, res5)
res5 = Resx3(res2, res3)

res3 = Resx4(f, r3)

However, this method only works under the assumption that the polynomials are alge-
braically independent. If, for example, res4(x1, x2) and res5(x1, x2) share a common poly-
nomial factor g(x1, x2) that contains the root, then res6(x1) = Resx2(res4, res5) will be the

zero polynomial and x
(0)
1 cannot be determined.

Unfortunately, one cannot easily use more than three candidates rj, besides repeating
the scheme for different combinations. Moreover, the last resultant computation can take
a significant amount of time and memory, since the degrees of the polynomials that are the
outcome of the resultants grow fast. This is why we use Gröbner bases instead of resultant
methods to extract the root. For a detailed introduction of Gröbner bases, we refer to [21,
Chapter 2].

Suppose we have a set of polynomials {f, r1, . . . , r`} and suppose that these polynomials

have the small root (x
(0)
1 , . . . , x

(0)
v) in common. Then a Gröbner basis G := {g1, . . . , gt} is

a set of polynomials of which one of the properties is that it preserves the set of common
roots of {f, r1, . . . , r`}. In other words, the variety of the ideal I generated by {g1, . . . , gt} is
the same as the variety of the ideal generated by {f, r1, . . . , r`}. The advantage of having a
Gröbner bases is that the gi can be computed with respect to some ordering that eliminates
the variables. Having such an elimination ordering, it is easy to extract the desired root.

In our experiments we usually find much more polynomials r1, . . . , r` than the required
amount of ` = 3. Therefore, we have two advantages of Gröbner basis in comparison with
resultant methods. First, in contrast to resultants the computation time of a Gröbner
basis usually benefits from more overdefined systems. This lowers the time for extracting
the root. Secondly, we do not have to search over all subsets of three polynomials until
we find an algebraically independent one. Instead, we simply put all the polynomials in
our Gröbner basis computation. This computation can only fail if the variety V(I) defined
by the ideal I which is generated by {f, r1, . . . , r`} is not zero-dimensional. Therefore, we
make the following heuristic assumption for our attack.

Assumption 5.8 (Relaxation of Assumption 3.7)

Let f, r1, . . . , r` be the polynomials in our attack that share the root (x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) over

the integers, for some ` ≥ 3. We assume that the variety V(I) of the ideal I generated by
{f, r1, . . . , r`} is zero-dimensional.

83

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

Now that we have defined the assumption upon which our new result will be based, we are
ready to state it.

Theorem 5.9 (RSA-CRT with Small dp, dq)
Under Assumption 5.8, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes
of bitsize 1

2
n. Let e < φ(N), dp < p − 1, and dq < q − 1 be the public exponent and

private CRT-exponents, satisfying edp ≡ 1 mod (p − 1) and edq ≡ 1 mod (q − 1). Let
bitsize(dp), bitsize(dq) ≤ βn. Then N can be factored in time polynomial in n provided that

β < 0.0734− ε.

The rest of Section 5.3 will be devoted to the details of this new result. We will show
the polynomial with a small root from which the attack is derived, prove the result of
Theorem 5.9, comment on how the attack can be implemented, and discuss the results of
the experiments.

5.3.1 A bound for a specific polynomial f with a small root

Let us take another look at the attack of Bleichenbacher and May from Theorem 5.5.
Bleichenbacher and May show that multiplying the two RSA-CRT equations edp =

1 + kp(p − 1) and edq = 1 + kq(q − 1) with each other in a clever way yields the linear
equation

e2x1 + ex2 − (N − 1)x3 − x4 = 0,

if we substitute x1 = dpdq, x2 = dp(kq − 1) + dq(kp − 1), x3 = kpkq, x4 = kp + kq − 1.

Although linearization of an equation makes the analysis easier and keeps the lattice
dimension small, better results can sometimes be obtained by using a nonlinear polynomial
equation directly. The equation

e2dpdq + edp(kq − 1) + edq(kp − 1)− (N − 1)kpkq − (kp + kq − 1) = 0

yields a polynomial

f(x1, x2, x3, x4) = e2x1x2 + ex1x4 − ex1 + ex2x3 − ex2 − (N − 1)x3x4 − x3 − x4 + 1

with monomials 1, x1, x2, x3, x4, x1x2, x1x4, x2x3, x3x4 and a small root

(x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4) = (dp, dq, kp, kq), with

|x(0)
1 | < X1 = Nβ,

|x(0)
2 | < X2 = Nβ,

|x(0)
3 | < X3 = Nα+β− 1

2 ,

|x(0)
4 | < X4 = Nα+β− 1

2 .

84

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

We will follow the strategy for finding small integer roots of Section 3.3.2 to analyze which
attack bound corresponds to this polynomial f .

In the basic strategy, the set S that describes which monomials xi1
1 xi2

2 xi3
3 xi4

4 are used
for the shift polynomials, is simply the set that contains all monomials of fm−1 for a given
integer m. The set M contains all monomials that appear in xi1

1 xi2
2 xi3

3 xi4
4 f(x1, x2, x3, x4),

with xi1
1 xi2

2 xi3
3 xi4

4 ∈ S. More precisely, S and M can be described as

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

i1 = 0, . . . ,m− 1− i3,
i2 = 0, . . . ,m− 1− i4,
i3 = 0, . . . ,m− 1,
i4 = 0, . . . ,m− 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

i1 = 0, . . . , m− i3,
i2 = 0, . . . , m− i4,
i3 = 0, . . . , m,
i4 = 0, . . . , m.

However, in Section 3.3.2 it is also advised to explore the possibility of extra shifts of one
or more variables. Since X1 and X2 are significantly smaller than X3 and X4 for α > 1

2
,

we find that the attack bound is superior for α = 1 if we use extra shifts of x1 and x2.
Therefore, we take

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S⇔

i1 = 0, . . . , m− 1− i3 + t,
i2 = 0, . . . , m− 1− i4 + t,
i3 = 0, . . . , m− 1,
i4 = 0, . . . , m− 1,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M⇔

i1 = 0, . . . , m− i3 + t,
i2 = 0, . . . , m− i4 + t,
i3 = 0, . . . , m,
i4 = 0, . . . , m,

for some t that has to be optimized as a function of m and α.

Our goal is to find at least three polynomials r1, r2, r3 with the root (x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4)

over the integers. From Section 3.3.2 we know that these polynomials can be computed by
lattice basis reduction techniques as long as

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W sW , for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and sW = |S|. (5.1)

For a given integer m and t = τm, our last definition of S and M yields the bound

(X1X2)
(5
12

+ 5
3
τ+ 9

4
τ2+τ3)m4+o(m4)(X3X4)

(5
12

+ 5
3
τ+ 3

2
τ2)m4+o(m4) < W (1

4
+τ+τ2)m4+o(m4).

5.3.2 Description of the new attack

We use the bound derived in the previous section to prove Theorem 5.9. Moreover, we
show how to use the new attack for the case of CRT-BalancedExponents instead of CRT-
Small-dp, dq.

Proof of Theorem 5.9:

Let us continue with the polynomial

f(x1, x2, x3, x4) = e2x1x2 + ex1x4 − ex1 + ex2x3 − ex2 − (N − 1)x3x4 − x3 − x4 + 1

85

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

from the previous section. In the inequality

(X1X2)
(5
12

+ 5
3
τ+ 9

4
τ2+τ3)m4+o(m4)(X3X4)

(5
12

+ 5
3
τ+ 3

2
τ2)m4+o(m4) < W (1

4
+τ+τ2)m4+o(m4),

the values X1 = X2 = Nβ, X3 = X4 = Nα+β− 1
2 , and W = max{e2X1X2, (N − 1)X3X4)} =

N2α+2β can be substituted. We let m grow to infinity and let all terms of order o(m4)
contribute to some error term ε, and obtain the asymptotic bound
(

5

12
+

5

3
τ +

9

4
τ 2 + τ 3

)
·2β+

(
5

12
+

5

3
τ +

3

2
τ 2

)
·(2α + 2β − 1) <

(
1

4
+ τ + τ 2

)
·(2α + 2β) ,

which leads to

β <
5− 4α + 20τ − 16ατ + 18τ 2 − 12ατ 2

14 + 56τ + 66τ 2 + 24τ 3
− ε.

For α = 1, we find an optimal value of τ ≈ 0.381788 and we get

β < 0.0734− ε.

Hence, for a 1024-bit modulus, dp and dq are in the asymptotical attack space if they are
less then 75 bits. Analogously, for a 2048-bit modulus, dp and dq are in the asymptotical
attack space if they are at most 150 bits.

The new attack for smaller α:

For other α between 1
2

and 1, we can use the same bound

β <
5− 4α + 20τ − 16ατ + 18τ 2 − 12ατ 2

14 + 56τ + 66τ 2 + 24τ 3
− ε

to optimize τ , and find the corresponding bound for β.

In order to decide which shift polynomials to use, we assumed that x
(0)
1 , x

(0)
2 are smaller

than x
(0)
3 , x

(0)
4 , that is α ≥ 1

2
. For α < 1

2
, one uses extra x3 and x4-shifts instead of extra

x1 and x2-shifts. Because of the symmetry in the monomial set of f , one can immediately
see that the attack bound is

(X1X2)
(5
12

+ 5
3
τ+ 3

2
τ2)m4+o(m4)(X3X4)

(5
12

+ 5
3
τ+ 9

4
τ2+τ3)m4+o(m4) < W (1

4
+τ+τ2)m4+o(m4).

The above bound leads to

β <
5− 4α + 20τ − 16ατ + 27τ 2 − 30ατ 2 + 12τ 3 − 24ατ 3

14 + 56τ + 66τ 2 + 24τ 3
− ε.

Note that this bound only holds for α + β > 1
2
, since we assume that the values of kp

and kq are unknown to the attacker. Both conditions are only met if α ≥ 1
6
. However, in

Section 5.3.4 we provide experimental evidence that our heuristic attack is successful only
when α ≥ 1

4
.

86

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

The following table shows the asymptotic bound of this attack for several sizes of α, and
the optimal τ that is used to obtain the bound.

α optimal τ bound
0.25 0.382 β < 0.2867
0.30 0.033 β < 0.2714
0.4 0 β < 0.2428
0.5 0 β < 0.2142
0.6 0 β < 0.1857

α optimal τ bound
0.7 0 β < 0.1571
0.8 0 β < 0.1285
0.9 0.151 β < 0.1002
0.95 0.256 β < 0.0865
1.0 0.382 β < 0.0734

Table 5.1: Bounds for different choices of α

In the revised paper by Sun/Hinek/Wu [69], the authors propose as new parameters
{α = 0.577, β = 0.186}. For this choice, we find the bound β < 0.192, which breaks the
new proposal in polynomial time. In the following figure, we show the new attack area.

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

Β = logNHdpL

known
attacks

new attack

0.25 0.5 0.75 1
Α = logNHeL

0.25

0.5

Β = logNHdpL

Figure 5.3: CRT-BalancedExponents

5.3.3 Implementation of the new attack

Although we have derived our attack bound directly from the strategy of Section 3.3.2, we
deviate from this strategy for the implementation of the attack. Basically, we make use of
Coppersmith’s original technique [16] instead of Coron’s reformulation [18]. This does not
change the asymptotic bound of the attack, but it has a major practical advantage. Namely,
the lattices used in the attacks are high-dimensional, and Coppersmith’s original method
requires only the reduction of a lower-dimensional sublattice1. Since the LLL process is
the most costly factor in our attack, this leads to a significant improvement in practice.
Furthermore, we slightly adapt Coppersmith’s original method such that we directly obtain
triangular lattice bases, which in turn simplifies the determinant calculations.

1In the Crypto’07 proceedings, a new article by Coron [19] shows how to adapt his method such that
it also requires only the reduction of a sublattice instead of the reduction of the full lattice, and hence his
new technique could be applied here, too.

87

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

So, let us first explain how to apply Coppersmith’s original technique for our attack. We
introduce the shift polynomials

gi1i2i3i4(x1, x2, x3, x4) = xi1
1 xi2

2 xi3
3 xi4

4 f(x1, x2, x3, x4),

for xi1
1 xi2

2 xi3
3 xi4

4 ∈ S for a set of monomials S, as specified in Section 5.3.1.
As before, we define the set M as the set of all monomials that appear in the shift poly-

nomials. We use the notation s = |S| for the total number of shifts and d = |M | − |S| for
the difference of the number of monomials and the number of shifts. Notice that the maxi-
mal coefficient of f(x1X1, x2X2, x3X3, x4X4) is e2X1X2, and the monomial corresponding
to it is x1x2. We define S ′ as the set of monomials xi1+1

1 xi2+1
2 xi3

3 xi4
4 , for xi1

1 xi2
2 xi3

3 xi4
4 ∈ S.

Naturally, |S ′| = |S| = s. We now build a (d + s)× (d + s) matrix B1 as follows.

The upper left d×d block is diagonal, where the rows of the block represent the mono-
mials xi1

1 xi2
2 xi3

3 xi4
4 ∈ M\S ′. The diagonal entry of the row corresponding to xi1

1 xi2
2 xi3

3 xi4
4 is

(X i1
1 X i2

2 X i3
3 X i4

4)−1. The lower left s×d block contains only zeros. The last s columns of the
matrix B1 represent the shift polynomials gi1i2i3i4 = xi1

1 xi2
2 xi3

3 xi4
4 f , for xi1

1 xi2
2 xi3

3 xi4
4 ∈ S. The

first d rows correspond to the monomials in M\S ′, and the last s rows to the monomials
of S ′. The entry in the column corresponding to gi1i2i3i4 is the coefficient of the monomial
in gi1i2i3i4 .

We illustrate the description with a simple example. Let us use the set S as de-
scribed in Section 5.3.1 with m = 1 and t = 0, which results in the lattice basis B1 given
in Figure 5.4. We only use the polynomial f(x1, x2, x3, x4) itself as a shift polynomial.
Therefore, s = 1 and we have d + s = 9 monomials. The rows represent the monomials
1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2 and the last column corresponds to the coefficients of
these monomials in f .

1 0 0 0 0 0 0 0 −1
0 1

X1
0 0 0 0 0 0 −e

0 0 1
X2

0 0 0 0 0 −e

0 0 0 1
X3

0 0 0 0 −1

0 0 0 0 1
X4

0 0 0 −1

0 0 0 0 0 1
X3X4

0 0 1−N

0 0 0 0 0 0 1
X2X3

0 e

0 0 0 0 0 0 0 1
X1X4

e

0 0 0 0 0 0 0 0 e2

Figure 5.4: Matrix B1 for the case m = 1, t = 0

In general, the determinant of matrix B1 is

det(B1) =

 ∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′
(X i1

1 X i2
2 X i3

3 X i4
4)−1

 · (e2)s.

88

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

Let us get back to our example, and consider the vector

v(x1, x2, x3, x4) = (1, x1, x2, x3, x4, x3x4, x2x3, x1x4, x1x2) .

Note that

v(x1, x2, x3, x4) ·B1 =

(
1,

x1

X1

,
x2

X2

,
x3

X3

,
x4

X4

,
x3x4

X3X4

,
x2x3

X2X3

,
x1x4

X1X4

, f(x1, x2, x3, x4)

)
.

So,

‖v(dp, dq, kp, kq) ·B1‖ =

∥∥∥∥
(

1,
dp

X1

,
dq

X2

,
kp

X3

,
kq

X4

,
kpkq

X3X4

,
dqkp

X2X3

,
dpkq

X1X4

, 0

)∥∥∥∥ ≤
√

d.

Since the Xj determine the upper bound of the root, there is always such a vector v which,
if one substitutes the unknowns {dp, dq, kp, kq} for the variables {x1, x2, x3, x4}, becomes a

vector with Euclidean norm smaller than
√

d after multiplication with the matrix B1.
Let us perform a unimodular transformation U1 on B1 to create a matrix B2 such that

B2 = U1 ·B1 =

(
Ad×d 0d×s

A′
s×d Is×s

)
.

Now if the rows of B1 form a basis of a lattice L, then the rows of B2 form a basis of the
same lattice. Moreover, the rows of

B3 =
(

Ad×d 0d×s

)

are a basis of the sublattice L0 of L which has zeros in the last s entries. Notice that
det(L0) = det(L). Clearly, v(dp, dq, kp, kq) · B1 is in the lattice L0 spanned by the rows of
B3. Since

v(dp, dq, kp, kq) ·B1 = v(dp, dq, kp, kq)U
−1
1 B2,

this means that the last s entries of v(dp, dq, kp, kq)U
−1
1 must be zero. We use the notation

bvcsh for the vector v ‘shortened’ to its first d entries. Then,

bv(dp, dq, kp, kq) ·B1csh = bv(dp, dq, kp, kq)U
−1
1 B2csh = bv(dp, dq, kp, kq)U

−1
1 cshA.

Next, we reduce A using lattice basis reduction to a basis B = U2A. It follows that

bv(dp, dq, kp, kq) ·B1csh = bv(dp, dq, kp, kq)U
−1
1 cshU−1

2 B.

We use the notation v′(dp, dq, kp, kq) for the vector bv(dp, dq, kp, kq)U
−1
1 cshU−1

2 , and B∗

(with row vectors b∗i) for the basis after applying Gram-Schmidt orthogonalization to B.
Now we can make three observations. Firstly, the vector v′ is integral. This is because both
matrices U1 and U2 have integer entries. Secondly, ‖v(dp, dq, kp, kq) ·B1‖ <

√
d. Thirdly, it

is known [48] that the Gram-Schmidt orthogonalization of the LLL reduced basis satisfies

‖b∗d‖ ≥ 2
−(d−1)

4 det(L)
1
d .

89

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

So, if we combine these three facts, we obtain that

√
d ≥ ‖v(dp, dq, kp, kq) ·B1‖ = ‖ bv(dp, dq, kp, kq) ·B1csh ‖ = ‖ v′(dp, dq, kp, kq)B ‖

≥ | v′(dp, dq, kp, kq)d | · ‖b∗d‖ ≥ | v′(dp, dq, kp, kq)d | · 2
−(d−1)

4 det(L)
1
d .

Since the terms 2
−(d−1)

4 and
√

d do not depend on N , we let them contribute to an error
term ε. Thus, whenever

det(L)
1
d > 1,

we must have | v′(dp, dq, kp, kq)d | = 0.
Hence, the polynomial r1 corresponding to the coefficient vector v′(x1, x2, x3, x4)d has

the root (dp, dq, kp, kq) over the integers.

We shall now show that the bound det(L)
1
d > 1 is equivalent to the bound (5.1) that

was given in Section 5.3.1. One can check that

det(L)
1
d = det(B1)

1
d =

 ∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′
(X i1

1 X i2
2 X i3

3 X i4
4)−1

1
d

· (e2)
s
d .

So the bound det(L)
1
d > 1 implies that

 ∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′
(X i1

1 X i2
2 X i3

3 X i4
4)

 < (e2)s. (5.2)

Replace e2 by W
X1X2

. We observe that the difference between the monomials of M\S ′ and
M\S is s times the monomial x1x2. Multiplying both sides by (X1X2)

s yields

Xs1
1 Xs2

2 Xs3
3 Xs4

4 < W s, for sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij and s =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈S

1.

It follows that if this bound holds, then applying Coppersmith’s method gives us a
polynomial r1(x1, x2, x3, x4) from the coefficient vector v′(x1, x2, x3, x4)d, such that r1 has
the desired root (dp, dq, kp, kq) over the integers. But in order to extract the root, we have
to construct at least two more polynomials which share the same root.

It is always possible to construct a constant number of polynomials with the same
common root provided that condition (5.2) is satisfied, at the cost of a slightly larger error
term ε in the construction. To show this, we use a theorem of Jutla [40], which gives us a
lower bound for the length of any Gram-Schmidt vector in an LLL reduced basis. Namely,

‖b∗i ‖ ≥ 2
−(i−1)

4

(
det(L)

bm−i
max

) 1
i

for i = 1 . . . d,

90

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

where bmax is the maximal length of the Gram-Schmidt orthogonalization of the matrix A
(the matrix before starting the LLL reduction process). Following the analysis of [40], it
can be checked that in our attack, bmax = e2. Therefore, ‖b∗i ‖ > 1 reduces to

2
−(i−1)

4

(∏
x

i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′(X

i1
1 X i2

2 X i3
3 X i4

4)−1
)
· (e2)s

(e2)d−i

1
i

> 1.

Since 2
−(i−1)

4 does not depend on N , we let it contribute to an error term ε. This simplifies
our condition to

∏

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S′
(X i1

1 X i2
2 X i3

3 X i4
4) < (e2)s−(d−i),

Notice that for i = d, we obtain the same bound as in (5.2). In Section 5.3.1, we have seen
that s = (1

4
+ τ + τ 2)m4 + o(m4). Hence, as long as d− i = o(m4), the asymptotic bound

does not change and we get just another error term that contributes to ε. This is clearly
satisfied if d− i is a small constant. Thus, all polynomials r1, . . . , r` corresponding to the
coefficient vectors v′(x1, x2, x3, x4)d+1−i, i = 1 . . . `, share the common root (dp, dq, kp, kq).

As we discussed at the beginning of Section 5.3, Gröbner bases are an excellent way to
find a common root from the set {f, r1, . . . , r`}. Hence, under Assumption 5.8, we can find
the secret root (dp, dq, kp, kq).

5.3.4 Experiments for the new attack

In the following experiments, we applied our attack for varying sizes of e and dp, dq. The
LLL reduction was carried out using a C-implementation of the provable L2 reduction
algorithm due to Nguyen and Stehlé [58]. The timings were performed on a 1GHz PC
running Cygwin.

Experiments for small e

All experiments in this section were done for 1000-bit N . For every fixed e, we looked for
the maximal bitsize for dp, dq that gave us enough small vectors for recovering the secrets.
In our experiments, we fixed the attack parameter m = 2 and tried different values of t.

In the table below, the third column provides the bound of Bleichenbacher and May
(Theorem 5.5) which can be achieved using a 3-dimensional lattice. The fourth column
provides the bound for the attack that appears in the papers of Galbraith, Heneghan, and
McKee [28] and Sun and Wu [70], and that was described in Theorem 5.4. This attack,
that we will call the GHM-attack from now on, is also related to the attack described
in this section. If an entry in the GHM-column is negative for a specific choice of α,
then this means that the GHM-attack does not work for this α (since obviously, private
CRT-exponents with negative bitsize are not possible).

91

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

The β-column gives the theoretical upper bound for the chosen parameters m, t and e. If
an entry in this column is negative, then it means that theoretically, the new attack should
not work yet for this small lattice size. The ‘asymp’-column gives the asymptotic bound
which is reached when the lattice dimension goes to infinity.

e dp, dq BM GHM β asymp lattice parameters LLL
Thm.5.5 Thm.5.4 time

250 bit 332 bit 0.250 0.333 0.227 0.287 m = 2, t = 0, dim = 27 2 sec
300 bit 299 bit 0.250 0.300 0.209 0.271 m = 2, t = 0, dim = 27 2 sec
400 bit 239 bit 0.240 0.233 0.173 0.243 m = 2, t = 0, dim = 27 2 sec
500 bit 199 bit 0.200 0.167 0.136 0.214 m = 2, t = 0, dim = 27 2 sec
577 bit 168 bit 0.169 0.115 0.108 0.192 m = 2, t = 0, dim = 27 2 sec
700 bit 119 bit 0.120 0.033 0.064 0.157 m = 2, t = 0, dim = 27 2 sec
800 bit 79 bit 0.080 −0.033 0.027 0.128 m = 2, t = 0, dim = 27 2 sec
900 bit 38 bit 0.040 −0.100 −0.009 0.100 m = 2, t = 0, dim = 27 2 sec
900 bit 40 bit 0.040 −0.100 0.013 0.100 m = 2, t = 1, dim = 56 93 sec
925 bit 29 bit 0.030 −0.117 −0.018 0.093 m = 2, t = 0, dim = 27 2 sec
925 bit 31 bit 0.030 −0.117 0.006 0.093 m = 2, t = 1, dim = 56 87 sec
950 bit 19 bit 0.020 −0.133 −0.027 0.087 m = 2, t = 0, dim = 27 2 sec
950 bit 23 bit 0.020 −0.133 −0.001 0.087 m = 2, t = 1, dim = 56 80 sec

Table 5.2: Experiments for the new attack: CRT-BalancedExponents

In all the experiments mentioned in Table 5.2, we were able to recover the factorization
of N . Experimentally, we see that our attack is much better than theoretically predicted.
The reason is that for these RSA parameter settings, the shortest vectors are linear com-
binations of certain subsets of the lattice basis. I.e., the shortest vectors belong to some
specific sublattice and the determinant calculation of the full lattice in Section 5.3.1 does
not accurately capture the optimal choice of basis vectors. However, to identify the optimal
sublattice structure for every fixed size e seems to be a difficult task.

Let us first comment on the results for 250-bit and 300-bit e. Recall the GHM-attack
from Theorem 5.4, and note that it is closely related to our new attack. Basically, they
use a Coppersmith method for finding modular roots, to find the small root (kp, kq) of a
polynomial fe modulo e. The polynomial fe is exactly our polynomial f taken modulo e.
Hence, the goal of their attack is to find the modular root (kp, kq) of the polynomial

fe(x3, x4) = (N − 1)x3x4 + x3 + x4 − 1

modulo e. This polynomial fe, with monomials 1, x3, x4, x3x4 has the well-known (‘genera-
lized rectangle’) bound

X3X4 < e
2
3
−ε,

that specifies for which upper bounds X3, X4 of x3, x4 the root can be found in polynomial

92

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

time. Substituting X3 = X4 = Nα+β− 1
2 , and e = Nα, we find the attack bound

β <
1

2
− 2

3
α− ε.

Since for α = 0.25, α = 0.3, the bound of the GHM-attack is superior to our new attack
bound, the GHM-attack should be used for these cases instead of the new attack. However,
if one uses the new attack, the lattice basis reduction algorithm finds very short vectors
that correspond to certain sublattices that still lead to the GHM-bound. This explains for
these small values of α, why the experimental results are better than expected.

These were the only instances that we discovered, where Assumption 5.8 failed. Since
the reduced basis vectors corresponded to the underlying structure of the GHM-attack, we
were not able to eliminate three variables. However, we always found a polynomial of the
form (kp + kq − 1)x3x4 − kpkq(x3 + x4 − 1) in the Gröbner basis, which directly yields kp

and kq. Knowledge of kp is sufficient to factor N in polynomial time, provided that e is
large enough: Notice that

p = 1− k−1
p mod e.

From the theorem of Coppersmith for factoring with high bits known (Theorem 4.1), it

follows that we can find p in polynomial time whenever e ≥ N
1
4 , which is satisfied in our

experiments. We also made attacks for the case e < N
1
4 , where we still got the secrets

kp, kq. However, this information does not seem to be sufficient for factoring N efficiently.
This is consistent with the GHM-attack, where Galbraith, Heneghan, and McKee state
that the attack only succeeds if the factorization of N can be extracted in polynomial time
from the knowledge of the exposed kp, kq.

For α ≥ 2
5
, i.e. e of bitsize at least 400, Assumption 5.8 was always valid. In all

experiments, the Gröbner basis corresponding to {f, r1, . . . , r`} yielded (dp, dq, kp, kq) and
therefore the factorization of N . The roots were found by using the F4 Gröbner basis
algorithm implemented in Magma V2.11-14. We would like to note that, when we did not
include all candidates r1, . . . , r` but used only a few, it sometimes happened that we could
eliminate two variables only. In that case, we were still able to retrieve the secrets, since
the Gröbner Basis, where x2 and x4 were eliminated, then contained a polynomial with
the terms (dp + (kp − 1)x1 − dpx3) and (dq + (kq − 1)x1 − dqx3) in its factorization.

For e of bitsizes 400 up to 800, we actually rediscovered the bound 2
5
(1−α) by Bleichen-

bacher/May experimentally. Again the lattice basis reduction algorithm found certain sub-
lattices which in this case lead to the BM-bound. Even a moderate increase of the lattice
dimension did not give us any improvement in this range of e. Although our asymptotical
bound always beats the BM-bound, we are not able to see this effect for small e, since
going beyond the BM-bound requires high-dimensional lattice bases.

For e larger than 900 bits we can for the first time see the effect of increasing the lattice
dimension and we are able to go slightly beyond the BM-bound. This effect intensifies for
full size e, where the BM-bound does not give any results at all.

93

Attacks on RSA-CRT variants 5.3 A new attack on CRT-Small-dp, dq

Experiments for full size e

Here we describe the experiments for RSA with a standard key generation for small CRT-
exponents, which usually yields full size e. Namely, the parameters dp, dq are chosen for a
fixed bitsize and e is the unique integer modulo φ(N) which is the inverse of dp, dq modulo
p− 1 and q − 1, respectively.

Every experiment in Table 5.3 gave us sufficiently many polynomials with the desired
roots over the integers, such that we could recover the factorization. The Gröbner basis
computation never took more than 100 sec and consumed a maximum of 300 MB.

Notice that for 10000-bit N , we can recover dp, dq of bitsize 140, which would not be
possible by a meet-in-the-middle attack.

N dp, dq β lattice parameters LLL time
1000 bit 10 bit −0.015 m = 2, t = 1, dim = 56 61 sec
1000 bit 13 bit −0.002 m = 2, t = 2, dim = 95 1129 sec
1000 bit 15 bit 0.002 m = 3, t = 1, dim = 115 13787 sec
2000 bit 20 bit −0.015 m = 2, t = 1, dim = 56 255 sec
2000 bit 22 bit −0.002 m = 2, t = 2, dim = 95 1432 sec
2000 bit 32 bit 0.002 m = 3, t = 1, dim = 115 36652 sec
5000 bit 52 bit −0.015 m = 2, t = 1, dim = 56 1510 sec
5000 bit 70 bit −0.002 m = 2, t = 2, dim = 95 18032 sec

10000 bit 105 bit −0.015 m = 2, t = 1, dim = 56 3826 sec
10000 bit 140 bit −0.002 m = 2, t = 2, dim = 95 57606 sec

Table 5.3: Experiments for the new attack: CRT-Small-dp, dq

As in the experiments before, the β-bound is very inaccurate. For lattice dimensions
56 and 95, we should not obtain any results at all, while experimentally we succeeded for
d with bitsizes roughly a 0.010-fraction respectively a 0.013-fraction of n. On the other
hand, our asymptotical bound states that we could in theory go up to a 0.073-fraction.
Unfortunately, we are a tad bit away from the theoretical bound, since currently the best
LLL reductions only allow to reduce lattice bases of moderate size, when the base matrices
have large entries. Let us give a numerical example. Theoretically, for m = 10 we find
an optimal value of t = 6 which yields a bound of 0.063. However, this parameter choice
results in a lattice dimension of 4200 which is clearly out of practical reach.

Our result guarantees that one can find the factorization of N for a sufficiently large –
but fixed – lattice dimension for CRT-exponents dp, dq up to a 0.073-fraction. Moreover,
it is does not rule out that one can go beyond this bound. Even with our approach, the
experimental results seem to indicate that an analysis of sublattice structures could lead to
a better theoretical bound (see Section 7.2). We hope that these open problems stimulate
further research in the exciting areas of lattice-based cryptanalysis and fast practical lattice
basis reduction algorithms.

94

Attacks on RSA-CRT variants 5.4 A new attack on CRT-Qiao&Lam

5.4 A new attack on CRT-Qiao&Lam

Qiao and Lam [60] proposed to use dp and dq such that dp−dq = 2 in their method for fast
signature generation on a low-cost smartcard. For the size of dp and dq, they suggest 128
bits to counteract the meet-in-the-middle attack. Moreover, they state that 96 bits should
be enough to counteract this attack in practice. In current proposals, a minimum of 160
bits is advised for the private exponents to counteract the meet-in-the-middle attack.

In this section, we explain how a small root of a polynomial f(x, y, z) = a0 + a1x +
a2x

2 + a3y + a4z + a5xy + a6xz + a7yz results in a new attack on CRT-Qiao&Lam. We
show the following result.

Theorem 5.10 (Attack on CRT-Qiao&Lam)
Under Assumption 3.7, for every ε > 0, there exists an integer n0 such that for every
n > n0, the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of
bitsize 1

2
n. Let ed ≡ 1 mod φ(N), and dp and dq be such that dp ≡ d mod (p − 1) and

dq ≡ d mod (q − 1). Assume that dp and dq are chosen such that dp = dq + c for some
known c and for bitsize(dp), bitsize(dq) ≤ βn for some 0 < β < 1

2
. Then N can be factored

in time polynomial in n provided that

β <
1

4
(4−

√
13)− ε.

Notice that 1
4
(4 − √13) ≈ 0.099. Hence, our attack applies whenever dp or dq is smaller

than N0.099−ε and the difference c = dp − dq is known to an attacker.

5.4.1 A bound for a specific polynomial f with a small root

In this section we will give a novel analysis for a trivariate polynomial that appears in the
cryptanalysis of the CRT-Qiao&Lam variant (and, as we shall see in Chapter 6, also in the
cryptanalysis of the Common Prime RSA variant).

Let f(x, y, z) = a0 + a1x + a2x
2 + a3y + a4z + a5xy + a6xz + a7yz be a polynomial

with a small root (x(0), y(0), z(0)), with |x(0)| < X, |y(0)| < Y , |z(0)| < Z. We show that
under Assumption 3.7 for every fixed ε, all sufficiently small roots can be found in time
polynomial in the bitsize of W provided that

X7+9τ+3τ2

(Y Z)5+ 9
2
τ < W 3+3τ−ε,

where we can optimize τ ≥ 0 after the substitution of values for X, Y, Z, and W .
Let us follow the extended strategy described in Section 3.3.2 to show how this bound

can be obtained. Our goal is to construct two polynomials r1, r2 with root (x(0), y(0), z(0))
that are not multiples of f . To do so, we fix an integer m depending on ε and an integer
t = τm that describes the number of extra x-shifts. We define R = WX2(m−1)+t(Y Z)m−1

and f ′ = a−1
0 f mod R. The shift polynomials g and g′ are given by:

g : xi1yi2zi3f ′(x, y, z)X2(m−1)+t−i1Y m−1−i2Zm−1−i3 for xi1yi2zi3 ∈ S,

g′ : Rxi1yi2zi3 for xi1yi2zi3 ∈ M\S,

95

Attacks on RSA-CRT variants 5.4 A new attack on CRT-Qiao&Lam

for

S =
⋃

0≤j≤t{xi1+jyi2zi3 | xi1yi2zi3 is a monomial of fm−1},

M = {monomials of xi1yi2zi3 · f | xi1yi2zi3 ∈ S}.
It follows that

xi1yi2zi3 ∈ S ⇔ i2 = 0, . . . , m− 1 ; i3 = 0, . . . , m− 1 ;

i1 = 0, . . . , 2(m− 1)− (i2 + i3) + t.

xi1yi2zi3 ∈ M ⇔ i2 = 0, . . . , m ; i3 = 0, . . . , m ; i1 = 0, . . . , 2m− (i2 + i3) + t.

All polynomials g and g′ have the root (x(0), y(0), z(0)) modulo R. Let r1 and r2 be
linear combinations of the polynomials g and g′. As was explained in Section 3.2, if r1

and r2 satisfy Howgrave-Graham’s bound ||ri(xX, yY, zZ)|| < R√
ω
, then we can assume

that r1 and r2 both have the root (x(0), y(0), z(0)) over the integers, and also that they are
algebraically independent of f .

Using the coefficient vectors of g(xX, yY, zZ) and g′(xX, yY, zZ) as a basis, we build
a lattice L. We order the vectors such that the matrix is triangular, with the diago-
nal entries of g equal to X2(m−1)+t(Y Z)m−1, and those of g′ equal to RX i1Y i2Zi3 =
X2(m−1)+t+i1Y m−1+i2Zm−1+i3W .

Now by (3.7), provided that
∏3

j=1 X
sj

j < W |S| with sj =
∑

x
i1
1 ...x

i3
3 ∈M\S ij holds, the

polynomials r1 and r2 corresponding to the shortest two LLL reduced basis vectors satisfy
Howgrave-Graham’s bound. This bound reduces to

X(7
3
+3τ+τ2)m3+o(m3)(Y Z)(5

3
+ 3

2
τ)m3+o(m3) ≤ W (1+τ)m3+o(m3).

If we let all terms of order o(m3) contribute to ε, the condition simplifies to

X7+9τ+3τ2

(Y Z)5+ 9
2
τ < W 3+3τ−ε.

5.4.2 Description of the new attack

We use the bound derived in the previous section to prove Theorem 5.10.

Proof of Theorem 5.10:

When dp − dq = c, the public and private variables of RSA-CRT satisfy the following
relations.

{
edp = 1 + kp(p− 1),

e(dp − c) = 1 + kq(q − 1),
or equivalently

{
edp − 1 + kp = kpp,

edp − ce− 1 + kq = kqq.

96

Attacks on RSA-CRT variants 5.4 A new attack on CRT-Qiao&Lam

Multiplying the two equations results in

(1 + ce)− (2e + ce2)dp + e2d2
p − (ce + 1)kp − kq + edpkp + edpkq + (1−N)kpkq = 0,

in which the unknowns are dp, kp, and kq. We can extract from this equation that

f(x, y, z) = (1 + ce)− (2e + ce2)x + e2x2 − (ce + 1)y − z + exy + exz + (1−N)yz

has a small root (dp, kp, kq). From (dp, kp, kq), the factorization of N can easily be found.
Suppose max{dp, dq} is of size Nβ for some β ∈ (0, 1

2
). Then kp and kq are both bounded by

Nβ+ 1
2 (as usual, we omit constants and let these contribute to the error term ε). Therefore,

we put X = Nβ, Y = Z = Nβ+ 1
2 , and W = N2+2β.

In Section 5.4.1 we showed that for this polynomial, the asymptotic bound is

X7+9τ+3τ2

(Y Z)5+ 9
2
τ < W 3+3τ ,

where τ ≥ 0 can be optimized. Substituting the values for X, Y , Z, and W , we obtain

(7 + 9τ + 3τ 2)β + (5 + 9
2
τ)(2β + 1)− (3 + 3τ)(2β + 2) < 0, or

3βτ 2 + 3(4β − 1
2
)τ + (11β − 1) < 0.

For the optimal value τ =
1
2
−4β

2β
, this reduces to

β <
1

4
(4−

√
13) ≈ 0.099.

Therefore, for a 1024 bit modulus N , the system should be considered unsafe when dp

is at most 0.099 · 1024 ≈ 101 bits. Theoretically, this breaks the system of Qiao and Lam
for the proposed 96 bit exponents in time polynomial in the bitsize of N .

We can add an exhaustive search on the most significant bits of dp and try the attack
for each candidate for d̃p. Here, dp = d̃p + d0, where the unknown part of dp is d0.
The corresponding polynomial f will change, but it will still have the same monomials.
Therefore, the analysis will follow easily. The proposal of Qiao and Lam to use 128 bit
private exponents can also be considered unsafe when applying such an extra exhaustive
search, although performing such an attack may be costly in practice.

5.4.3 Experiments for the new attack

We performed several experiments to test the validity of Assumption 3.7 and to show which
results can be achieved with relatively small lattices. We implemented the new attacks on
a 2.4GHz Pentium running Linux. The LLL lattice basis reduction was done using Shoup’s
NTL [66]. For the attack on RSA-CRT with known difference described in Theorem 5.10,
the parameters dp, dq were chosen with difference dp−dq = 2 as suggested in the Qiao-Lam
scheme. For m = 2 the choice t = 8 maximizes the size of the attackable dp.

97

Attacks on RSA-CRT variants 5.5 Tabular overview

N dp lattice parameters LLL time
1000 bit 10 bit m = 2, t = 3, dim = 54 32 min
2000 bit 22 bit m = 2, t = 3, dim = 54 175 min
3000 bit 42 bit m = 2, t = 3, dim = 54 487 min
4000 bit 60 bit m = 2, t = 3, dim = 54 1015 min
5000 bit 85 bit m = 2, t = 3, dim = 54 1803 min
500 bit 9 bit m = 2, t = 8, dim = 99 105 min

1000 bit 18 bit m = 2, t = 8, dim = 99 495 min
500 bit 13 bit m = 3, t = 3, dim = 112 397 min

Table 5.4: Experiments attack CRT-Qiao&Lam

In each experiment we obtained two polynomials r1(x, y, z), r2(x, y, z) with the desired
root (x(0), y(0), z(0)). Solving g(z) = Resy(Resx(r1, f), Resx(r2, f)) = 0 yielded the unknown
z(0). The parameters y(0) and x(0) could be obtained by back substitution. The resultant
heuristic of Assumption 3.7 worked perfectly in practice. For every instance, we could
recover the secrets and hence factor N .

One should note that our experiments are quite far from solving the proposed 96-bit
dp, dq instances of the Qiao-Lam scheme. Theoretically, the smallest m for which one
obtains the 96-bit bound is m = 61 together with t = 36, resulting in a lattice dimension
of 376712. Reducing lattice bases in this dimension is clearly out of reach.

However, we would like to point out that we did not optimize the performance of our
attack. For optimization of the running time, one should combine brute force guessing of
most significant bits of dp with the described lattice attack. Moreover, one should apply
faster lattice basis reduction methods like the recently proposed L2-method of Nguyen,
Stehlé [58]. Additionally, a significant practical improvement should be obtained by imple-
menting Coppersmith’s original method instead of Coron’s method as we did in Section 5.3.

5.5 Tabular overview

The following table includes all known and new attacks on RSA-CRT variants that run
in polynomial time.

98

Attacks on RSA-CRT variants 5.5 Tabular overview

Variant Attack bound Reference

CRT- known MSBs: δ < 1
4
− α− ε Thm. 5.7.1

Small-e
known LSBs: δ < 1

4
− ε and kp is known Thm. 5.7.2

CRT- β < 0.0734− ε Thm. 5.9
Small-dp, dq

CRT- β < 1
2
(1− 3γ + γ2)− ε Thm. 5.1

UnbalancedPrimes

β < 1− 2
3
γ − 2

3

√
γ2 + 3γ − ε Thm. 5.2

β < 1
3
(3− 2γ − γ2 −

√
12γ − 8γ2 − 5γ3 + γ4)− ε Thm. 5.3

CRT- β < 3
8
− 1

2
α− ε Thm. 5.1

BalancedExponents
β < 7

12
− 1

12

√
7 + 48α− ε Thm. 5.3

β < 1
2
− 2

3
α− ε Thm. 5.4

β < 2
5
− 2

5
α− ε Thm. 5.5

β < 5−4α+20τ−16ατ+18τ2−12ατ2

14+56τ+66τ2+24τ3 − ε, for α ≥ 1
2
, and Sect. 5.3.2

τ ≥ 0 to be optimized

β < 5−4α+20τ−16ατ+27τ2−30ατ2+12τ3−24ατ3

14+56τ+66τ2+24τ3 − ε for Sect. 5.3.2
1
4
≤ α ≤ 1

2
, and τ ≥ 0 to be optimized

α > 1
4

and kp is known Thm. 5.6

CRT-Qiao&Lam β < 1
4
(4−√13)− ε Thm. 5.10

Table 5.5: Polynomial time attacks on RSA-CRT variants

99

6
Attacks on Common Prime RSA

In this chapter we discuss the known attacks on Common Prime RSA, and show a new
attack on this variant. Section 6.3 is based on [37], a joint paper with Alexander May.

6.1 Introduction

In Chapter 5, we mentioned that RSA-CRT is often used when efficient decryption is
needed, since using RSA-Small-d can be unsafe because of the attacks of Wiener and
Boneh/Durfee [75, 10]. However, there is also a possibility to choose d < N

1
4 in RSA while

avoiding Wiener’s attack. There is a variant of RSA where Wiener’s attack works less
well, as was already shown by Wiener, namely when gcd(p − 1, q − 1) has a large prime
factor. Lim and Lee used this fact in a proposal [50], which was attacked a few years later
by McKee and Pinch [56]. Recently Hinek [32] revisited this variant, calling it Common
Prime RSA, and investigated its potential and its weaknesses.

In Common Prime RSA, we have N = pq for primes p and q such that

p = 2ga + 1 and q = 2gb + 1,

for g a large (and possibly unknown) prime, and a, b coprime integers. The exponents e
and d are mutually inverse modulo lcm(p− 1, q − 1) = 2gab:

ed = 1 + k · 2gab, with 0 < e, d < 2gab.

The goal is to safely choose an exponent d < N
1
4 , which enables a fast RSA decryption

process. We set g = Nγ and d = Nβ for some 0 ≤ γ < 1
2
, 0 < β < 1− γ. Then, e is of size

N1−γ, k is of size Nβ, and a and b are both of size N
1
2
−γ.

6.2 Known attacks

We give a short description of the known attacks on instances of Common Prime RSA,
in which we focus only on polynomial time attacks. Naturally, there exist non-polynomial
time attacks for this specific RSA variant, such as a method for factoring these special
primes p and q other than the standard factorization methods (see [56, 32]).

100

Attacks on Common Prime RSA 6.2 Known attacks

Theorem 6.1 (Hinek, [32]: Known g)
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n such that p− 1 = 2ga

and q − 1 = 2gb, for some prime g of bitsize γn, with 0 ≤ γ < 1
2
. Let ed ≡ 1 mod 2gab,

with bitsize(e) = (1 − γ)n and bitsize(d) = βn, with 0 < β < 1 − γ. Finally, suppose that
the value of g is known. Then N can be factored in time polynomial in n when:

γ ≥ 1

4
.

Proof.
As Hinek remarks in [32], the attack for γ ≥ 1

4
is very easy to perform. Recall that

p− 1 = 2ga and q− 1 = 2gb, so a and b are of size N
1
2
−γ. When g ≥ a+ b, or equivalently:

γ ≥ 1
4
, then an attacker knows c = a + b from

N − 1

2g
= 2gab + a + b ≡ a + b mod g.

Then one can solve a from N−1
2g

= 2ga(c− a) + c.
2

When g < a+b, McKee/Pinch have an attack with expected running time O(N
1
4
−γ), which

implies a running time of at most O(N ε) for γ > 1
4
− ε. Their attack for known g is based

on the Baby-Step-Giant-Step algorithm, see [56] for details.

Another attack on Common Prime RSA with known g was given by Hinek in [32], and
is summarized in the following theorem.

Theorem 6.2 (Hinek, [32]: Known g and small d)
For every ε > 0, there exists an integer n0 such that for every n > n0, the following holds:
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n such that p− 1 = 2ga

and q − 1 = 2gb, for some prime g of bitsize γn, with 0 ≤ γ < 1
4
. Let ed ≡ 1 mod 2gab,

with bitsize(e) = (1 − γ)n and bitsize(d) = βn, with 0 < β < 1 − γ. Finally, suppose that
the value of g is known. Then N can be factored in time polynomial in n when:

β <
7

6
− 5

3
γ − 1

3

√
(7− 10γ)(1− 4γ)− ε.

Proof.
The bound in the above theorem is not explicitly mentioned in [32], but it follows from the
attack described there. Basically, when g is known, A = bN−1

4g2 e is a good approximation
of ab since

N − 1

4g2
= ab +

a + b

2g
.

Therefore, one can write ab = A + α, with α ≈ N
1
2
−2γ. From

ed− 1 = k2g(A + α),

101

Attacks on Common Prime RSA 6.2 Known attacks

it follows that f(x, y, z) = ex−2gAy−2gyz−1 has the root (d, k, α) over the integers, with

X = Nβ, Y = Nβ, and Z = N
1
2
−2γ. Note that this polynomial has the same monomials

as the polynomial used for an attack in Section 4.4.2, namely the attack on RSA-Small-d,
with knowledge of MSBs of d, without using the extra knowledge on k. It can be concluded
that the attack will work for

X1+3τY 2+3τZ1+3τ+3τ2

< W 1+3τ−ε,

with W = ‖f(xX, yY, zZ)‖ = N1+β−γ. Substituting the parameters, one gets the asymp-
totical bound

3τ 2(
1

2
− 2γ) + 3τ(β − 1

2
− γ) + (2β − 1

2
− γ) < 0,

and it follows that the optimal choice for τ is τ =
1
2
+γ−β

1−4γ
. One can check that this leads to

the bound

β <
7

6
− 5

3
γ − 1

3

√
(7− 10γ)(1− 4γ), provided that γ < 1

4
.

2

Note that this result can easily be extended with an exhaustive search on the most signi-
ficant bits of d. Suppose that d = d̃ + d0, where d0 is the unknown part of d. Replacing
d by d̃ + d0 will give rise to a similar polynomial f (only the constant term changes), and
therefore the analysis follows easily.

Theorem 6.3 (Wiener and Hinek, [75, 32]: Small d and unknown g)
Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n such that p− 1 = 2ga

and q − 1 = 2gb, for some prime g of bitsize γn, with 0 ≤ γ < 1
2
. Let ed ≡ 1 mod 2gab,

with bitsize(e) = (1−γ)n and bitsize(d) = βn, with 0 < β < 1−γ. Then N can be factored
in time polynomial in n if

1. the bound β < 1
4
− 1

2
γ holds, or

2. the bound β < γ2 − ε holds, or

3. the bound β < 2
5
γ − ε holds.

The bounds 2. and 3. hold for any ε > 0 and sufficiently large n.

Proof.
The first bound is the generalization of Wiener’s attack to the case of Common Prime
RSA. Let us discuss how Wiener’s attack works in this case.

It holds that

ed = 1 + k · 2gab, or: ed = 1 + k · (p− 1)(q − 1)

2g
.

102

Attacks on Common Prime RSA 6.2 Known attacks

Therefore,

e

(p− 1)(q − 1)
− k

d · 2g =
1

d(p− 1)(q − 1)
,

which means that k
d·2g

is a good approximation of e
φ(N)

. Since |N − φ(N)| < 3N
1
2 , it follows

that
∣∣∣∣
e

N
− k

d · 2g

∣∣∣∣ =

∣∣∣∣
ed · 2g − kN

Nd · 2g

∣∣∣∣ =

∣∣∣∣
(ed · 2g − kφ(N)) + k(φ(N)−N)

Nd · 2g

∣∣∣∣

=

∣∣∣∣
2g − k(N − φ(N))

Nd · 2g

∣∣∣∣ =

∣∣∣∣
1

Nd
− k(N − φ(N))

Nd · 2g

∣∣∣∣

≤
∣∣∣∣∣

3kN
1
2

Nd · 2g

∣∣∣∣∣ =

∣∣∣∣
3k

N
1
2 d · 2g

∣∣∣∣ <

∣∣∣∣
3

2N
1
2 g

∣∣∣∣ .

Recall that k
d·2g

can be found using the continued fraction expansion of e
φ(N)

when

∣∣∣∣
e

N
− k

d · 2g

∣∣∣∣ <
1

(d · 2g)2
.

Ignoring the terms that do not depend on N , this results in the bound

2β + 2γ <
1

2
+ γ, which reduces to β <

1

4
− 1

2
γ.

With the knowledge of dg and k, one can easily find g as the remainder of the division of
edg by k. If one has d, k, and g, then p and q can be derived easily.

The second bound in this theorem arises from the following observations. Note that

N − 1

2
= g · (2gab + a + b).

Let h := 2gab + a + b. Now, if the key equation

ed = 1 + k2gab

is multiplied by the inverse ê of e modulo gh (so êe = 1 + α̂gh), then

d− ê = (2êkab− α̂dh)g.

So, fg(x) = x − ê has the small root d modulo g. The upper bound on the root that
we want to find is X = Nβ. In this thesis, we do not discuss Coppersmith methods for
finding small roots modulo an unknown prime of which a multiple is known, however these
methods exist (see [13, 53]). By a known result described in [53, Theorem 6], we can find
this root when

X < (gh)γ2−ε,

103

Attacks on Common Prime RSA 6.3 A new attack on Common Prime RSA

which gives us the asymptotic bound β < γ2. As before, this can be extended with an
exhaustive search on the most significant bits of d, since the shape of the polynomial fg

does not change if we replace d by d̃ + d0 of which d0 is the unknown LSB part of d.

The third attack of this theorem starts by multiplying the equations:

ed = 1 + k(p− 1)b, and ed = 1 + k(q − 1)a,

which can be written out as

e2d2 + ed(ka + kb− 2)− (N − 1)k2ab− (ka + kb− 1) = 0.

Now f(x, y, z, u) = e2x + ey − (N − 1)z − u has the small root

(x0, y0, z0, u0) = (d2, d(ka + kb− 2), k2ab, (ka + kb− 1)),

with X = N2β, Y = N2β+ 1
2
−γ, Z = N2β+1−2γ, U = N

1
2
−γ, and W = ‖f(xX, yY, zZ, uU)‖∞ =

N2β+2−2γ. The bound

XY ZU < W 1−ε,

for a linear four-variate polynomial gives the asymptotic attack bound β < 2
5
γ. Adding

an exhaustive search on the bits of d is now a problem, since the shape of the polynomial
changes drastically when replacing d by d̃+d0 and the analysis will not extend in this case.

2

As a visualization, Figure 6.1 shows the attacks of Theorem 6.3, that is, all known poly-
nomial time attacks on Common Prime RSA if we suppose that g is unknown.

0.1 0.2 0.3 0.4 0.5
Γ = logNHgL

0.05

0.1

0.15

0.2

0.25

Β = logNHdL

6.3.1
6.3.2

6.3.3

0.1 0.2 0.3 0.4 0.5
Γ = logNHgL

0.05

0.1

0.15

0.2

0.25

Β = logNHdL

Figure 6.1: Common Prime RSA

6.3 A new attack on Common Prime RSA

In this section, we explain how a small root of a polynomial f(x, y, z) = a0 + a1x +
a2x

2 + a3y + a4z + a5xy + a6xz + a7yz results in a new attack on a variant of RSA called
Common Prime RSA. We show the following result.

104

Attacks on Common Prime RSA 6.3 A new attack on Common Prime RSA

Theorem 6.4 (Attack on Common Prime RSA)
Under Assumption 3.7, for every ε > 0, there exists n0 such that for every n > n0, the
following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 1

2
n such

that p − 1 = 2ga and q − 1 = 2gb, for some prime g of bitsize γn, with 0 ≤ γ < 1
2
. Let

ed ≡ 1 mod 2gab, with bitsize(e) = (1 − γ)n and bitsize(d) = βn, with 0 < β < 1 − γ.
Then d can be found in time polynomial in n provided that

β <
1

4
(4 + 4γ −

√
13 + 20γ + 4γ2)− ε.

6.3.1 Description of the new attack

The new attack can be obtained by treating the equation in Hinek’s second lattice attack
(Theorem 6.3.3) in a different way. We will now show how to modify Hinek’s attack to
obtain the result of Theorem 6.4.

Proof of Theorem 6.4:

Let us take another look at the equation

e2d2 + ed(ka + kb− 2)− (ka + kb− 1)− (N − 1)k2ab = 0,

in which the unknowns are d, k, a and b. We can conclude from this equation that the
polynomial f(x, y, z) = e2x2 + ex(y + z − 2) − (y + z − 1) − (N − 1)yz has a small root

(d, ka, kb) with X = Nβ, Y = Nβ+ 1
2
−γ, Z = Nβ+ 1

2
−γ. Moreover, W = N2+2β−2γ.

Note that the polynomial involved in this attack has the same set of monomials as the
polynomial of the attack on CRT-Qiao&Lam (see Section 5.4.1). Therefore, we can use
the asymptotical bound

X7+9τ+3τ2

(Y Z)5+ 9
2
τ < W 3+3τ

which yields

3βτ 2 + 3(4β − 1

2
− γ)τ + (11β − 1− 4γ) < 0.

For the optimal value of τ , namely τ =
1
2
+γ−4β

2β
, this reduces to

β <
1

4
(4 + 4γ −

√
13 + 20γ + 4γ2).

Figure 6.2 shows the new attack region as well as the known attacks, for any size of
modulus N . Combinations of d and g that should be considered unsafe by the new attack
are in the dark shaded area, whereas the lighter shaded area was already unsafe by the
known attacks. It can be seen that the number of ‘safe’ combinations {d, g} with d < N

1
4

has significantly decreased.

105

Attacks on Common Prime RSA 6.3 A new attack on Common Prime RSA

0.1 0.2 0.3 0.4 0.5
Γ =logNHgL

0.05

0.1

0.15

0.2

0.25

Β = logNHdL

known attacks

new attack

0.1 0.2 0.3 0.4 0.5
Γ =logNHgL

0.05

0.1

0.15

0.2

0.25

Β = logNHdL

Figure 6.2: New attack region

We note that for ‘small’ N (such as the regular 1024 bits), other attacks such as factoring
attacks may apply, see [32]. Also, depending on the size of N , the attacks in the figure
could be extended by an additional exhaustive search.

6.3.2 Experiments for the new attack

We performed experiments to check the validity of Assumption 3.7 and to demonstrate the
practicality of our attack. We have implemented the new attack for the parameter setting
m = 2, t = 0 (without the possible additional exhaustive search), to give an impression on
what a realistic bound is for the smallest lattice possible. Of course, extending to m = 3,
m = 4, etc. and using x-shifts will give results closer to the theoretical attack bound

β <
1

4
(4 + 4γ −

√
13 + 20γ + 4γ2),

but will also result in a longer time needed for the lattice basis reduction. For m = 2, t = 0
the reduction time (the longest part of the attack) is about one minute. The following
table summarizes the experimental results performed for n = 1024. As one can see, the
results are already outside the asymptotical range of the known attacks.

maximal β obtained β maximal β
γ (asymptotic) (m = 2, t = 0) (asymptotic)

new attack new attack known attacks
0.10 0.130 0.07 0.20
0.20 0.164 0.10 0.15
0.30 0.200 0.13 (∗) 0.12
0.40 0.237 0.17 (∗) 0.16
0.50 0.275 0.2 0.25

Table 6.1: Experiments for the new attack on Common Prime RSA

106

Attacks on Common Prime RSA 6.4 Tabular overview

The resultant heuristic of Assumption 3.7 worked perfectly in most cases. However, in
the rare situation that both β and γ were very small (e.g. γ = 0.1 and β = 0.05), we
encountered cases where some of the polynomials ri were algebraically dependent. In
these cases, we could still recover the secret information in two different ways. One way
was to use combinations of r1 and the somewhat ‘larger’ ri for i > 2, instead of only
r1 and r2. The other way was by examining the cause of the zero resultant. In essence,
Resy(Resx(r1, f), Resx(r2, f)) = 0 because Resx(r1, f) and Resx(r2, f) have a common poly-
nomial factor, whose coefficients immediately reveal the secrets.

6.4 Tabular overview

The following table shows the known polynomial time attacks on Common Prime RSA.

Type of attack Attack bound Reference

known g γ ≥ 1
4

Thm. 6.1

known g and β < 7
6
− 5

3
γ − 1

3

√
(7− 10γ)(1− 4γ)− ε and γ < 1

4
Thm. 6.2

small d

unknown g and β < 1
4
− 1

2
γ Thm. 6.3.1

small d
β < γ2 − ε Thm. 6.3.2

β < 2
5
γ − ε Thm. 6.3.3

β < 1
4
(4 + 4γ −

√
13 + 20γ + 4γ2)− ε Thm. 6.4

Table 6.2: Polynomial time attacks on Common Prime RSA

107

7
Conclusion & open questions

7.1 The security of RSA: Advice for implementors

In this thesis we have presented many variants on RSA, and discussed a variety of attacks
on them. In this section we give a conclusion on the security of RSA, and on the possibilities
to speed up RSA encryption or decryption by choosing special parameters.

First of all, the main lesson of this thesis is:

One should be very careful in choosing special relations between RSA parameters.

Although these special relations may lead to more efficient RSA variants, they also give
more possibilities to the attacker. Hence, the safest thing to do is to follow a standard
implementation (for an n-bit modulus N that is the product of two primes):

• Choose a parameter n such that you are certain that factoring an n-bit RSA modulus
cannot be performed.

• Choose random 1
2
n-bit primes p and q independently.

If p and q are truly chosen at random, then one can expect that p − q is not small
enough to apply one of the attacks described by de Weger [74], but a check can always
be performed. Similarly, one could check that gcd(p − 1, q − 1) is not too large, to
prevent attacks on the Common Prime RSA variant.

• Choose a random integer e smaller than, and coprime to φ(N) = (p− 1)(q − 1).
If e is chosen at random then one can expect with overwhelming probability that it
has the same bitsize as φ(N) (or only a few bits smaller), so attacks on small e will
not apply.

• Determine d by applying the Extended Euclidean Algorithm on e and φ(N).
Again, one can expect that d is ‘full size’, hence attacks on small d do not apply.

• In order to use Quisquater/Couvreur’s decryption method using the Chinese Remain-
der Theorem [61], compute dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1).
In this way, dp and dq will have bitsize 1

2
n, so attacks on small dp, dq will not apply.

108

Conclusion & open questions 7.1 The security of RSA: Advice for implementors

In the above steps it is very easy to perform tests to check if e, d, and dp, dq are indeed of
the expected bitsize.

Specific applications may ask for more efficient variants, so let us discuss the possibili-
ties for speeding up RSA that have been treated in this thesis.

RSA-Small-e and RSA-CRT-Small-e:

One of the most popular RSA variants in practice is RSA with a small public exponent e
(or RSA-CRT with a small e). The choice e = 3 should be considered unsafe nowadays.
For e = 3, there are simply too many things that can go wrong, like:

• attacks involving specific intercepted ciphertexts (Section 2.3),

• attacks related to the implementation (Section 2.3),

• partial key exposure attacks (Section 4.2 and 5.2).

For larger e, like the popular e = 65537, the only concern is partial key exposure attacks.
As has been known for some time (see Section 4.2), if e is this small, then only 1

4
n LSBs of

the decryption exponent d are sufficient to retrieve the factorization of N . Similarly, only
1
4
n LSBs or 1

4
n MSBs of dp are sufficient if RSA-CRT-Small-e is used for a very small value

of e.
Even for larger e, one must always be aware that partial key exposure attacks exist

(see Chapter 4) and that it is essential to keep all bits of d (or dp, dq) secret, e.g. take
countermeasures against side channel attacks.

RSA-Small-d and RSA-CRT-Small-dp, dq:

If one wants to decrease the cost for RSA decryption (or RSA signature generation), then
the main possibilities are to use RSA-Small-d or RSA-CRT-Small-dp, dq. Since the attacks
of Wiener [75] and Boneh/Durfee [10] we know that there exists a polynomial time attack
whenever d < N0.292.

In their paper, Boneh and Durfee explain that for d < N0.5, the equation

x(N + 1− y) ≡ 1 mod e

is likely to have a unique solution x = k, y = p + q. Therefore, they propose to choose
d > N0.5. In all parameter proposals, it is wise to choose your parameters ‘at a safe
distance’ from the current attacks. Having a list of attacks simply does not guarantee the
non-existence of other attacks.

When choosing a small d, one again has to keep in mind that partial key exposure
attacks exist whenever d is less than n bits long. Hence, sufficient countermeasures must
be taken such that parts of the secret key cannot leak.

For the case of small dp, dq, note that in this thesis, the first polynomial time attack on
RSA-Small-dp, dq is discussed. However, the bound {dp, dq} < N0.0734 is hard to achieve in
practice, and we think that {dp, dq} > N0.25 is still a very safe choice that can be made.

109

Conclusion & open questions 7.2 Open questions

RSA-CRT-UnbalancedPrimes and RSA-CRT-BalancedExponents:

We doubt that the CRT-UnbalancedPrimes and CRT-BalancedExponents variants are
used in practice. Especially the CRT-UnbalancedPrimes setting was mainly proposed
in [52] to investigate which CRT-variants could be attacked in polynomial time. The CRT-
BalancedExponents variant has a better motivation, but seems to give rise to many attacks.
If one wants to use one of these variants, then we recommend to choose the parameters ‘at
a safe distance’ from the current attacks (see Figure 5.1 and 5.3). For instance a suitable
choice for CRT-BalancedExponents could be e ≈ Nα and {dp, dq} ≈ Nβ with α > 1

2
and

β > 3
4
− 1

2
α. However, since we do not know how to efficiently generate key pairs that

satisfy this constraint (see Section 2.2), the relevance of this variant is truly questionable.

Other variants:

We do not recommend to use Common Prime RSA. Apart from the polynomial time
attacks in Section 6 there are other, non-polynomial time time attacks that are already
pretty powerful for n = 1024 or n = 2048 (see [32]). For these choices of n, there is simply
not enough room to choose d < N0.25 at some safe distance from the known attacks.

At this moment CRT-Qiao&Lam seems to be secure for dp > N0.25, but (as is the case
for all variants) other attacks may arise that improve the current attack bound.

Naturally, we have not discussed all RSA variants in detail (although we have covered
the most popular variants). Since Multi-prime RSA and Takagi’s RSA were not discussed
in this work, we refer to [33] and [13, 55] for the known attacks on these variants.

7.2 Open questions

In this section, we discuss some interesting open questions related to the work in this thesis.
First, we will describe two open questions related to finding small roots of polynomials.
Afterwards, we discuss two open questions related to cryptanalysis.

Open questions related to finding small roots:

Refinements of the (extended) strategy to choose shift polynomials:

In Section 3.3, we discussed a general strategy to choose the shift polynomials used in a
Coppersmith method given the monomials that appear in a polynomial fN or f . For the
extended strategy, we noted that in some cases, it is profitable to use extra shifts of a
certain variable (or certain variables). Hence, the current way of choosing the shifts is to
use the basic strategy, and then trying out some possibilities for using extra shifts.

Open question: Can we find a refinement of the way to choose the shift polynomials that
guarantees an optimal bound for any polynomial f that the strategy is used on?

110

Conclusion & open questions 7.2 Open questions

Investigating the heuristic involved when dealing with multivariate polynomials:

Recall that in Coppersmith methods for finding roots of multivariate polynomials, we often
have to deal with a heuristic assumption. If we want to find a modular root of a polynomial
fN in v variables (v ≥ 2), and the LLL reduction gives us polynomials r1, r2, . . . , rv that
share the desired root over the integers, then we can extract the root assuming that the ri

are algebraically independent. In the case of finding a small integer root of a polynomial
f in v variables (v ≥ 3), if the LLL reduction gives us polynomials r1, r2, . . . , rv−1 that
share the desired root over the integers, then we can extract the root assuming that the
polynomials of the set {f, r1, . . . , rv−1} are algebraically independent. The validation of
such an assumption is done using experiments, and since usually no problems occur, most
(practically oriented) researchers see no problems in using a heuristic attack. However, for
the theory of Coppersmith methods it is important to study this heuristic in more detail.

Open question: Can we define in which cases a Coppersmith method for a multivariate
polynomial is provable, in other words, does not rely on a heuristic assumption?

Recently, Bauer and Joux [2] made some important progress in this area. For the case
of finding small roots of integer polynomials f(x, y, z) they use the traditional Copper-
smith method to find a polynomial r1(x, y, z) independent of f that also has the desired
root. Next, they construct a new lattice similar to Coppersmith’s one that produces a third
polynomial r2(x, y, z) that contains the root and that is independent from {f, r1}. Bauer
and Joux show that if a certain criterion on the Gröbner basis of the ideal defined by {f, r1}
is satisfied, their method for finding a third independent polynomial r2 will always succeed.

Open questions related to cryptanalysis:

Extending attacks with an exhaustive search:

On the one hand, we have seen in this thesis that for a given attack using a Coppersmith
method, it can be costly to perform an attack in practice for parameters that are close to
the attack bound. On the other hand, in most cases an attack bound can be extended a
little bit by adding an exhaustive search.

Let us discuss a small example. Recall the new attack on Common Prime RSA of
Section 6.3.1. We obtained the asymptotical bound

X7+9τ+3τ2

(Y Z)5+ 9
2
τ < W 3+3τ , for

X = |d| = Nβ,

Y = |ka| = Nβ+ 1
2
−γ,

Z = |kb| = Nβ+ 1
2
−γ,

W = max{e2X2, (N − 1)Y Z} = N2+2β−2γ.

Now suppose we guess a number of most significant bits of d (say, a string of bitsize µn,
for some 0 < µ < β). Then we can use the same asymptotical bound, but now with

X = Nβ−µ, Y = Z = Nβ+ 1
2
−γ, W = N2+2β−2γ.

111

Conclusion & open questions 7.2 Open questions

One can check that, instead of the asymptotical attack bound

β <
1

4
(4 + 4γ −

√
13 + 20γ + 4γ2)

we now obtain

β <
1

4
(4 + 4γ −

√
13 + 20γ + 4γ2 − 20µ− 8γµ + 4µ2).

A typical example would be γ = 0.1, µ = 0.02 (think of µ = 0.02 as guessing about 20 bits
of d if N is a 1024-bit modulus). Then, the normal asymptotic bound of the attack is

β < 0.130464,

whereas the asymptotic bound with µ = 0.02 is

β < 0.143914.

Hence, by taking µ = 0.02 you achieve an improvement of the attack bound by 0.01345. It
follows that one cannot directly translate the knowledge of 20 bits into an improvement of
the attack bound by 20 bits. In other words, if one would perform this attack 220 times for
each possibility of the 20 MSBs of d, then one still would not be able to handle a d that
exceeds the asymptotical bound by 20 bits. This brings us to our open question.

Open question: Is there a better way to combine an attack using a Coppersmith method
with an exhaustive search?

Imagine that if d
(1)
M and d

(2)
M are two possibilities for the MSBs of d, and that d

(1)
M and

d
(2)
M are almost the same. Then is it really necessary to perform Coppersmith’s method

twice? The lattices involved will be very similar and it seems like a waste of computing
time to perform the LLL reduction of these slightly different lattices twice. Is it possible
to reuse a method performed for one candidate dM for a number of other candidates d′M
that are ‘close enough’ to dM?

Refining attack bounds using sublattices:

An important facet of Coppersmith attacks on RSA that we have not yet discussed in this
thesis, is the use of sublattices. Boneh and Durfee [10] were the first to use sublattices to
improve an attack bound. In Section 3.3.1 we explained that using the extended strategy
for finding small modular roots, one can find the factorization of N in polynomial time if
d < N0.284. However, the improved attack bound that Boneh and Durfee give is d < N0.292.
Let us briefly sketch how the use of sublattices helps here.

Recall the example given in Section 3.3.1 for the Boneh/Durfee-attack for the case
{m = 2, t = 1}, where the lattice L was spanned by the rows of a 9 × 9 matrix. Now
imagine that one looks at a lattice L′ that is spanned by a subset of these nine shift
polynomials. That means that the lattice L′ does not have full rank anymore, so calculating

112

Conclusion & open questions 7.2 Open questions

its determinant (or, as it should be called in this case, its volume) takes more effort.
However, “throwing away” some of the rows can result in a better bound, as shown in [10].

Often, the experiments of an attack will indicate that using a sublattice can be profi-
table. In practice, the smallest lattice vectors of the LLL reduced basis turn out to be an
integer linear combination of only a specific subset of the original shift polynomials. In
other words, the LLL algorithm does not use all vectors to approximate the shortest lattice
vectors. This suggests that analyzing the attack for the lattice L′ containing only this sub-
set of the shift polynomials can lead to an improved attack bound. For more details, we
refer to the papers of Boneh/Durfee and Blömer/May on this topic [10, 5].

In our new attacks on RSA variants, we occasionally encountered this phenomenon.
Recall the result of Theorem 5.9, our new attack on CRT-Small-dp, dq. As we mentioned in
Section 5.3.3, we used Coppersmith’s original method for the experiments, to profit from
the fact that the lattices that need to be reduced in Coppersmith’s original method have
smaller dimension than the ones in Coron’s reformulation [18]. However, with Copper-
smith’s original approach it is harder to analyze if sublattices can improve the attack
bound. Recall that in Coron’s method, the shortest vectors in the reduced method imme-
diately correspond to the small polynomials ri. Hence the transformation matrix of the
LLL reduction can tell us which shift polynomials have contributed to the smallest poly-
nomials ri. We have programmed our new attack on RSA-CRT using Coron’s method for
{m = 2, t = 1} (a 81-dim. lattice) to see what would happen in the LLL process. It turns
out that the polynomials ri(x1, x2, x3, x4) corresponding to the smallest vectors in the LLL
reduced basis all have a special structure.

In the following description of these polynomials ri we have replaced X2 by X1 and X4

by X3, since the upper bounds that we have for x
(0)
1 = dp and x

(0)
2 = dq are the same, as

are the upper bounds for x
(0)
3 = kp and x

(0)
4 = kq.

ri(x1, x2, x3, x4) := a1X
4
1X

2
3 · f + a2X

3
1X

2
3 · (x1 + x2) · f + a3X

4
1X3 · (x3 + x4) · f

+ a4X
3
1X3 · (x1x4 + x2x3) · f + a5X

2
1X

2
3 · x1x2 · f +

+ a6X
4
1 · x3x4 · f + a7X

2
1X

2
3 · (x2

1 + x2
2) · f +

+ a8X
3
1X3 · (x1x3 + x2x4) · f + a9X

2
1X3 · (x2

1x4 + x2
2x3) · f

+ a10X
2
1X3 · (x1x2x3 + x1x2x4) · f + a11X1X

2
3 · (x2

1x2 + x1x
2
2) · f

+ a12X
3
1 · (x1x3x4 + x2x3x4) · f + a13X

2
1 · x1x2x3x4 · f

+ a14X1X3 · (x2
1x2x4 + x1x

2
2x3) · f + a15X

2
3 · (x2

1x
2
2) · f

−
⌊

sum of coefficients of x2
3 in the above polynomials

WX4
1X2

3

⌉
WX4

1X
2
3 · x2

3

− . . .

−
⌊

sum of coefficients of x3
1x

3
2 in the above polynomials

WX4
1X2

3

⌉
WX4

1X
2
3 · x3

1x
3
2.

113

Conclusion & open questions 7.2 Open questions

Two plain observations are:

• Due to the symmetry of

f(x1, x2, x3, x4) := (ex1 + x3 − 1)(ex2 + x4 − 1)−Nx3x4

= e2x1x2 + e(x1x4 + x2x3 − x1 − x2) + (1−N)x3x4 − x3 − x4 + 1,

the polynomials corresponding to the smallest vectors are also very symmetrical.

• The rows corresponding to the polynomials

Rx2
3, Rx2x

2
3, Rx2

3x4, Rx2
4, Rx1x

2
4, Rx3x

2
4, Rx2

1x
2
4, Rx2

2x
2
3, Rx1x

2
3, Rx2x

2
4,

are not used in the smallest vectors. This is because the term
⌊

sum of coefficients of x2
3 in the above polynomials

WX4
1X

2
3

⌉

is zero, and equivalently for x2x
2
3, . . . , x2x

2
4.

Whether or not these observations can be used to obtain a better attack bound, is the
open question with which we conclude this thesis.

Open question: Can we use the fact that the ‘smallest’ polynomials are symmetrical, and
that a few rows of the original matrix are not necessary for LLL to create these ‘small’
polynomials, to improve the attack bound on CRT-Small-dp, dq?

A possible direction to take in order to answer this question is to look at the following
sublattice of L. Replace the two rows that represent the shifts polynomials

x1 · f ·X(m−1)+t−1
1 X

(m−1)+t
2 Xm−1

3 Xm−1
4 and x2 · f ·X(m−1)+t

1 X
(m−1)+t−1
2 Xm−1

3 Xm−1
4

by one row that contains their sum. Since we know that the shortest vectors in the LLL
reduced basis take the shifts of x1 and x2 with the same coefficient, the sum of the two
shifts can be used instead of two single shifts. The same holds for the shifts of x3 and x4,
the shifts of x1x4 and x2x3, etc. All of these couples of shifts can be replaced by their sum.

In the example we gave for the new RSA-CRT-Small-dp, dq attack (for m = 2, t = 1),
our sublattice L′ looks like:

shift 1 : f ·X4
1X

2
3 ,

shift 2 : (x1 + x2) · f ·X3
1X

2
3 ,

shift 3 : (x3 + x4) · f ·X4
1X

2
3 ,

. . .
shift 14 : (x2

1x2x4 + x1x
2
2x3) · f ·X1X3,

shift 15 : x2
1x

2
2 · f ·X2

3 ,

114

Conclusion & open questions 7.2 Open questions

together with the rows for the monomials that are in M\S:

shift 16 : (x2
3 + x2

4)R,
shift 17 : (x2x

2
3 + x1x

2
4)R,

shift 18 : (x2
3x4 + x3x

2
4)R,

. . .
shift 44 : (x3

1x
2
2x4 + x2

1x
3
2x3)R,

shift 45 : x3
1x

3
2R.

In this example, the lattice L′ is defined by 45 polynomials with in total 81 monomials.
The short vectors of L that were found by the LLL reduction are also in L′. In this
specific case, we even know that we can eliminate five rows more because we know that
the shifts (x2

3 + x2
4)RX4

1 , etc. do not appear in the smallest reduced lattice vectors of L.
The determinant of the 45-dimensional L′ of the example is given by

det(L′) = 218(X1X2)
128(X3X4)

74W 30, so (det(L′))
1
45 ≈ (X1X2)

2.844(X3X4)
1.644W 0.667.

This is only slightly smaller than the value of

(det(L))
1
81 = (X1X2)

232
81 (X3X4)

134
81 W

56
81 ≈ (X1X2)

2.864(X3X4)
1.654W 0.691.

Substituting the values of the Xi, W , and R in the respective inequalities det(L′)
1
45 < R

and det(L)
1
81 < R yields the bounds β < 0.0096 and β < −0.0153.

The determinant of the 40-dimensional lattice L′′ is a more complicated expression that
involves many terms in the Xi, W , e and N . When we substitute all known values in a
simplified version of the expression det(L′′)

1
40 < R, we find the bound β < 0.0102. This

bound is supported by the experiments in Section 5.3.4, where we can see in Table 5.3
that for {m = 2, t = 1}, we can successfully mount an attack if the length of the private
CRT-exponents is about 1

100
n.

At this moment, it is not yet clear if and how well this approach would work in general
(especially for m →∞ with optimal t). We do not have a general analysis of the determi-
nant of the lattice L′ (which does not have full rank anymore, so this determinant is the
volume of the lattice). Trying this and other approaches to improve the attack bound of
RSA-CRT-Small-dp, dq will be one of the many challenges in the fascinating research area
of cryptanalysis of RSA variants using small roots of polynomials.

115

Bibliography

[1] A. Baker and H. Davenport. The equations 3x2− 2 = y2 and 8x2− 7 = z2. Quarterly
Journal of Mathematics (Oxford) (2), volume 20: pages 129–137, 1969.

[2] A. Bauer and A. Joux. Toward a rigorous variation of Coppersmith’s algorithm on
three variables. In Proceedings of Eurocrypt’07, volume 4515 of Lecture Notes in
Computer Science, pages 361–378, 2007.

[3] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Proceedings of Crypto’98, volume 1462 of Lecture
Notes in Computer Science, pages 1–12, 1998.

[4] D. Bleichenbacher and A. May. New attacks on RSA with small secret CRT-exponents.
In Proceedings of PKC’06, volume 3958 of Lecture Notes in Computer Science, pages
1–13, 2006.

[5] J. Blömer and A. May. Low secret exponent RSA revisited. In Proceedings of CaLC’01,
volume 2146 of Lecture Notes in Computer Science, pages 4–19, 2001.

[6] J. Blömer and A. May. New partial key exposure attacks on RSA. In Proceedings of
Crypto’03, volume 2729 of Lecture Notes in Computer Science, pages 27–43, 2003.

[7] J. Blömer and A. May. A tool kit for finding small roots of bivariate polynomials
over the integers. In Proceedings of Eurocrypt’05, volume 3494 of Lecture Notes in
Computer Science, pages 251–267, 2005.

[8] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS,
volume 46(2): pages 203–213, 1999.

[9] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of checking crypto-
graphic protocols for faults. In Proceedings of Eurocrypt’97, volume 1233 of Lecture
Notes in Computer Science, pages 37–51, 1997.

[10] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N 0.292.
IEEE Transactions on Information Theory, volume 46(4): pages 1339–1349, 2000.

[11] D. Boneh, G. Durfee, and Y. Frankel. Exposing an RSA private key given a small
fraction of its bits, full version of [12]. http://crypto.stanford.edu/∼dabo/abstracts/
bits of d.html.

[12] D. Boneh, G. Durfee, and Y. Frankel. Exposing an RSA private key given a small
fraction of its bits. In Proceedings of Asiacrypt’98, volume 1514 of Lecture Notes in
Computer Science, pages 25–34, 1998.

116

[13] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring n = prq for large r. In
Proceedings of Crypto’99, volume 1666 of Lecture Notes in Computer Science, pages
326–337, 1999.

[14] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with
high bits known. In Proceedings of Eurocrypt’96, volume 1070 of Lecture Notes in
Computer Science, pages 178–189, 1996.

[15] D. Coppersmith. Finding a small root of a univariate modular equation. In Proceedings
of Eurocrypt’96, volume 1070 of Lecture Notes in Computer Science, pages 155–165,
1996.

[16] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, volume 10(4): pages 233–260, 1997.

[17] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low exponent RSA with
related messages. In Proceedings of Eurocrypt’96, volume 1070 of Lecture Notes in
Computer Science, pages 1–9, 1996.

[18] J.-S. Coron. Finding small roots of bivariate integer polynomial equations revisited.
In Proceedings of Eurocrypt’04, volume 3027 of Lecture Notes in Computer Science,
pages 492–505, 2004.

[19] J.-S. Coron. Finding small roots of bivariate integer polynomial equations: a direct
approach. In Proceedings of Crypto’07, volume 4622 of Lecture Notes in Computer
Science, 2007.

[20] J.-S. Coron and A. May. Deterministic polynomial-time equivalence of computing the
RSA secret key and factoring. Journal of Cryptology, 20: pages 39–50, 2007.

[21] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. An introduction
to computational algebraic geometry and commutative algebra. Undergraduate texts
in mathematics. Springer, 1992.

[22] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater, and J.-L. Willems.
A practical implementation of the timing attack. In Proceedings of CARDIS’98,
volume 1820 of Lecture Notes in Computer Science, pages 167–182, 1998.

[23] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, volume 22(6): pages 644–654, 1976.

[24] ECRYPT-AZTEC. Hardness of the main computational problems used in cryptogra-
phy. IST-2002-507932, http://www.ecrypt.eu.org/documents/D.AZTEC.4-1.1.pdf.

[25] M. Ernst, E. Jochemsz, A. May, and B.M.M. de Weger. Partial key exposure attacks
on RSA up to full size exponents. In Proceedings of Eurocrypt’05, volume 3494 of
Lecture Notes in Computer Science, pages 371–386, 2005.

117

[26] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases. Journal of
Pure and Applied Algebra, 139: pages 61–88, 1999.

[27] S.D. Galbraith, C. Heneghan, and J.F. McKee. Tunable balancing of RSA, full version
of [28]. http://www.isg.rhul.ac.uk/∼sdg/full-tunable-rsa.pdf.

[28] S.D. Galbraith, C. Heneghan, and J.F. McKee. Tunable balancing of RSA. In Proceed-
ings of ACISP’05, volume 3574 of Lecture Notes in Computer Science, pages 280–292,
2005.

[29] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer
Academic Publishers, 1992.

[30] G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford
University Press, 1979.

[31] J. H̊astad. Solving simultaneous modular equations of low degree. SIAM Journal on
Computing, volume 17(2): pages 336–341, 1988.

[32] M.J. Hinek. Another look at small RSA exponents. In Proceedings of CT-RSA’06,
volume 3860 of Lecture Notes in Computer Science, pages 82–98, 2006.

[33] M.J. Hinek. On the security of multi-prime RSA. Technical report, CACR, 2006.

[34] M.J. Hinek and Douglas R. Stinson. An inequality about factors of multivariate
polynomials. Technical report, CACR, 2006.

[35] N. Howgrave-Graham. Finding small roots of univariate modular equations revisited.
In Proceedings of IMA Int. Conf., volume 1355 of Lecture Notes in Computer Science,
pages 131–142, 1997.

[36] E. Jochemsz and B.M.M. de Weger. A partial key exposure attack on RSA using
a 2-dimensional lattice. In Proceedings of ISC’06, volume 4176 of Lecture Notes in
Computer Science, pages 203–216, 2006.

[37] E. Jochemsz and A. May. A strategy for finding roots of multivariate polynomials with
new applications in attacking RSA variants. In Proceedings of Asiacrypt’06, volume
4284 of Lecture Notes in Computer Science, pages 267–282, 2006.

[38] E. Jochemsz and A. May. A polynomial time attack on RSA with private CRT-
exponents smaller than N 0.073. In Proceedings of Crypto’07, volume 4622 of Lecture
Notes in Computer Science, 2007.

[39] A. Joux and F. Olivier. Side-channel analysis. In Encyclopedia of Cryptography and
Security, pages 571–576. Springer, 2005.

118

[40] C.S. Jutla. On finding small solutions of modular multivariate polynomial equations.
In Proceedings of Eurocrypt’98, volume 1403 of Lecture Notes in Computer Science,
pages 158–170, 1998.

[41] D. Kahn. The codebreakers: the story of secret writing. MacMillan, 1967.

[42] P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Proceedings of Crypto’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113, 1996.

[43] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of
Crypto’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397, 1999.

[44] J.L. Lagrange. Recherches d’arithmétique. Nouveaux Mémoires de l’Académie Royale
des Sciences et des Belles Lettres de Berlin, 1773.

[45] A.-M. Legendre. Essai sur la théorie des nombres. Duprat, Paris, An VI, 1798.

[46] A.K. Lenstra. Integer factoring. In Encyclopedia of Cryptography and Security, pages
290–297. Springer, 2005.

[47] A.K. Lenstra and H.W. Lenstra Jr. (eds.). The development of the number field sieve.
Lecture Notes in Mathematics, volume 1554, 1993.

[48] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, volume 261(4): pages 515–534, 1982.

[49] H.W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
volume 126(2): pages 649–673, 1987.

[50] C.H. Lim and P.J. Lee. Security and performance of server-aided RSA computation
protocols. In Proceedings of Crypto’95, volume 963 of Lecture Notes in Computer
Science, pages 70–83, 1995.

[51] A. May. RSA & meet-in-the-middle Angriffe. Chapter from the course “Public
Key Kryptanalyse”, available via http://www.informatik.tu-darmstadt.de/KP/lehre/
ws0506/vl/pkk.html.

[52] A. May. Cryptanalysis of unbalanced RSA with small CRT-exponent. In Proceedings
of Crypto’02, volume 2442 of Lecture Notes in Computer Science, pages 242–256, 2002.

[53] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis,
University of Paderborn, 2003.

[54] A. May. Computing the RSA secret key is deterministic polynomial time equivalent
to factoring. In Proceedings of Crypto’04, volume 3152 of Lecture Notes in Computer
Science, pages 213–219, 2004.

119

[55] A. May. Secret exponent attacks on RSA-type schemes with moduli prq. In Proceedings
of PKC’04, volume 2947 of Lecture Notes in Computer Science, pages 218–230, 2004.

[56] J.F. McKee and R. Pinch. Further attacks on server-aided RSA cryptosystems.
http://citeseer.ist.psu.edu/388295.html, 1998.

[57] H. Minkowski. Geometrie der Zahlen. Teubner Verlag, 1896.

[58] P.Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proceedings of Euro-
crypt’05, volume 3494 of Lecture Notes in Computer Science, pages 215–233, 2005.

[59] P.Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proceedings of
CaLC’01, volume 2146 of Lecture Notes in Computer Science, pages 146–180, 2001.

[60] G. Qiao and K.-Y. Lam. RSA signature algorithm for microcontroller implementation.
In Proceedings of CARDIS’98, volume 1820 of Lecture Notes in Computer Science,
pages 353–356, 1998.

[61] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronic Letters, volume 18: pages 905–907, 1982.

[62] J.-J. Quisquater and F. Koeune. Side channel attacks, state of the art. Available via
http://www.crypto.rub.de/en sclounge.html, 2002.

[63] D. Redmond. Number theory: an introduction, volume no. 201 of Monographs and
Textbooks in Pure and Applied Mathematics. Marcel Dekker, 1996.

[64] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, volume 21(2): pages
120–126, 1978.

[65] W. Scharlau and H. Opolka. From Fermat to Minkowski. Lectures on the theory
of numbers and its historical development. Undergraduate texts in mathematics.
Springer-Verlag, 1985.

[66] V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl.

[67] S. Singh. The code book: the science of secrecy from ancient Eqypt to quantum cryp-
tography. Anchor books, 2000.

[68] R. Steinfeld and Y. Zheng. An advantage of low-exponent RSA with modulus primes
sharing least significant bits. In Proceedings of CT-RSA’01, volume 2020 of Lecture
Notes in Computer Science, pages 52–62, 2001.

[69] H.-M. Sun, M.J. Hinek, and M.-E. Wu. On the design of rebalanced RSA-CRT, revised
version of [70]. Technical report, CACR, 2005.

120

[70] H.-M. Sun and M.-E. Wu. An approach towards RSA-CRT with short public exponent.
http://eprint.iacr.org/2005/053, 2005.

[71] T. Takagi. Fast RSA-type cryptosystem modulo pkq. In Proceedings of Crypto’98,
volume 1462 of Lecture Notes in Computer Science, pages 318–326, 1998.

[72] E.R. Verheul and H.C.A. van Tilborg. Cryptanalysis of ’less short’ RSA secret ex-
ponents. Applicable Algebra in Engineering Communication and Computing, volume
8(5): pages 425–435, 1997.

[73] P.S. Wang and L.P. Rothschild. Factoring multivariate polynomials over the integers.
ACM SIGSAM Bulletin, issue 28: pages 21–29, 1973.

[74] B.M.M. de Weger. Cryptanalysis of RSA with small prime difference. Applicable
Algebra in Engineering, Communication and Computing, volume 13(1): pages 17–28,
2002.

[75] M.J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory, volume 36(3): pages 553–558, 1990.

121

122

Index

assumptions , 23, 28, 83
algebraic independence , 27, 28, 83
balancedness . , 23

Chinese Remainder Theorem (CRT) . . . , 11
continued fractions . , 19
Coppersmith: small integer roots , 24

choosing the shifts , 40
Coron’s reformulation , 28
multivariate polynomials , 29
original method , 87

Coppersmith: small modular roots , 24
choosing the shifts , 32
Howgrave-Graham’s reformulation . , 25
multivariate polynomials , 26

cryptanalysis . , 3
cryptography . , 3

asymmetric . , 3
symmetric . , 3

cryptology . , 3

Extended Euclidean Algorithm , 9

Gröbner bases . , 83

lattices . , 21
balanced lattice , 23
Lagrange reduction , 23
LLL reduction . , 22
sublattices . , 112

partial key exposure (PKE) attacks . . . , 47

rational approximation , 18
resultants . , 27
RSA . , 4

basic encryption scheme , 9
digital signature scheme , 10

RSA cryptanalysis . , 15
attacks for specific (m, c) , 16
attacks using extra information , 17
brute force attacks , 15
factoring ., 4, 15
implementation attacks , 16
meet-in-the-middle attacks , 15

RSA variants . , 10
Common Prime RSA , 14, 100

known attacks , 101, 102
new attack . , 105

CRT-BalancedExponents , 13, 75
known attacks , 77–81
new attack . , 87

CRT-Qiao&Lam , 13, 75
new attack . , 95

CRT-Small-dp, dq , 12, 74
new attack . , 84

CRT-Small-e , 12, 74
known PKE attacks , 82

CRT-Standard , 11, 74
CRT-UnbalancedPrimes , 12, 74

known attacks , 77, 78
Multi-prime RSA , 14
Partial Prime Knowledge , 14

known attack , 48
Small Prime Difference , 14
Small-d . , 11

known attacks , 18, 20, 35
new PKE attacks , 53, 60, 61

Small-e . , 11
known attacks , 16, 17
known PKE attacks , 48, 50–52
new PKE attacks , 61

Steinfeld&Zheng , 14, 49
Takagi’s RSA . , 14

side channel attacks , 5, 16
Square-and-Multiply Method , 10

123

124

Nederlandse samenvatting

Cryptologie is een onderzoeksgebied dat o.a. het vercijferen en ontcijferen van berichten
omvat. ‘Public key’ cryptografie is een tak van cryptografie waarin we cryptosystemen
onderzoeken waarbij elke gebruiker een publieke en een geheime sleutel heeft, waarbij de
geheime sleutel niet af te leiden is uit de publieke sleutel. Met zijn geheime sleutel kan een
gebruiker berichten ontcijferen of een digitale handtekening zetten, terwijl anderen met
de publieke sleutel berichten kunnen vercijferen of handtekeningen kunnen verifiëren. Dit
heeft veel toepassingen, met name op het gebied van internetcommunicatie. Het systeem
RSA was in 1978 het eerste voorstel voor een public key cryptosysteem, en tot op de dag
van vandaag is het nog altijd het populairste public key cryptosysteem.

RSA heeft de volgende parameters. De RSA-modulus N (publiek) is het product van
twee grote priemgetallen p en q (geheim). Verder is er een publieke sleutel e en een geheime
sleutel d. Deze d is gemakkelijk uit N en e af te leiden mits de factorisatie van N bekend
is. Dit komt omdat e en d voldoen aan de relatie

ed ≡ 1 mod (p− 1)(q − 1).

Als men RSA wil breken (oftewel, de geheime (d, p, q) achterhalen als (N, e) bekend is),
kan men natuurlijk proberen om N te factoriseren. Maar aangezien er geen factorisatie-
methoden bekend zijn met een looptijd die polynomiaal is in de bitlengte van N , lukt dit
niet als de priemgetallen p en q groot genoeg gekozen zijn.

Desondanks blijkt het mogelijk om N te factoriseren in polynomiale tijd als we wat
extra informatie krijgen over de geheime parameters. Het is bijvoorbeeld mogelijk dat een
aanvaller een deel van de bits van d heeft achterhaald door middel van een zogenaamde
‘side channel attack’. Een ander voorbeeld waarin een aanvaller extra informatie heeft is
als hij weet dat de parameters van het RSA-systeem dat hij aanvalt op een bepaalde manier
gekozen zijn. In sommige RSA-voorstellen worden bijvoorbeeld priemgetallen gebruikt die
aan een speciale relatie voldoen, of sleutels e en d gekozen die relatief ‘klein’ zijn.

In dit proefschrift bespreken we bekende en nieuwe aanvallen op verscheidene RSA-
varianten. De aanvallen komen voort uit het feit dat de speciale relaties tussen de para-
meters N , p, q, e en d vertaald kunnen worden in een veelterm met een ‘klein’ nulpunt.
Als dit kleine nulpunt gevonden kan worden dan vinden we direct de geheime informatie
(d, p, q), en hebben we het betreffende RSA-systeem gebroken.

Dit brengt ons bij de theorie van het vinden van nulpunten. In 1996 introduceerde Don
Coppersmith methodes om ‘kleine’ nulpunten x0 te vinden van een veelterm f(x) modu-
lo N , en om ‘kleine’ geheeltallige nulpunten (x0, y0) te vinden van een veelterm f(x, y).
Voor de veeltermen in onze aanvallen hebben we soms uitbreidingen van deze methodes
naar meer variabelen nodig. Bij deze uitbreidingen worden technieken als resultanten,
Gröbner bases en reductie van roosterbases gebruikt. Ook op het gebied van het vinden
van kleine nulpunten is vooruitgang geboekt: in dit proefschrift is een algemene strategie
opgenomen die gevolgd kan worden voor een willekeurige veelterm f . Ook is uit deze stra-
tegie makkelijk af te leiden hoe klein een bepaald nulpunt van een gegeven veelterm precies
moet zijn, om het te kunnen vinden in polynomiale tijd.

125

126

Summary: Cryptanalysis of RSA variants
using small roots of polynomials

Cryptology is a research area that includes (among other things) methods to encipher and
decipher messages. In the area of public key cryptography, we examine cryptosystems in
which every user has a public key and a private key, where the private key cannot be derived
from the public key. With the private key, the user can decrypt messages or produce a
digital signature, whereas the public key can be used by everyone to encrypt messages,
or verify that a signature is correct. These public key schemes have many applications,
especially in the area of safe internet communication. The RSA cryptosystem, published in
1978, was the first proposal for a multipurpose public key cryptosystem, and has remained
the most popular public key cryptosystem ever since.

The RSA cryptosystem has the following parameters. The RSA modulus N (public)
is the product of two large prime numbers p and q (secret). Moreover, there is a public
key e and a secret key d. This d can easily be derived from e and N provided that the
factorization of N is known, because e and d satisfy the relation

ed ≡ 1 mod (p− 1)(q − 1).

If one wants to break RSA (that is, retrieve the secret information (d, p, q) from a given
(N, e)), one could try to factor N . However, since we do not know factorization methods
with a running time that is polynomial in the bitsize of N , these factorization methods
will not succeed if the prime numbers p and q are chosen large enough.

Nevertheless, it turns out to be possible to factor N in polynomial time if we get some
extra information on the secret parameters d, p, and q. It is for instance possible that an
attacker has obtained a part of the bits of d by performing a so-called ‘side-channel attack’.
Another example in which an attacker has extra information is when it is known that the
parameters of the system are chosen in a special way. In some RSA proposals, primes are
used that satisfy special relations. In other RSA variants, e or d is chosen to be relatively
‘small’.

In this thesis we discuss many known and new attacks on several RSA variants. The
attacks arise from the fact that the special relation between the parameters N , p, q, e, and d
can be translated into a polynomial with a ‘small’ root. If the root can be found, then one
immediately finds the secret information (d, p, q), thereby breaking this RSA variant.

This brings us to the theory of finding small roots. In 1996 Don Coppersmith introduced
methods to find ‘small’ roots x0 of a polynomial f(x) modulo N , and to find ‘small’ integer
roots (x0, y0) of a polynomial f(x, y). For the polynomials in our attacks we sometimes
need extensions of these methods to more variables. In these extensions, techniques like
resultants, Gröbner bases, and lattice basis reduction are used. In the area of finding small
roots we have also made progress: in this thesis one can find a general strategy that can be
followed for an arbitrary polynomial f . From the strategy it is easy to derive a bound that
describes how small a root of the given polynomial should be, such that it can be found in
polynomial time.

127

128

Acknowledgments

This thesis could not have been made without the help and support of many people.
First of all, I owe a great deal to my supervisors, Henk van Tilborg and Benne de

Weger. Henk initiated the NWO project“Key Issues in Cryptology” for which I was hired,
and has followed my research and coached my development as a researcher from the start.
Besides that he is mostly responsible for the great working environment in the Coding
theory & Cryptology group of the TU Eindhoven. Benne has been a great, enthusiastic
‘daily supervisor’. I am very thankful that he chose RSA cryptanalysis as a suitable topic
for my research, a topic that captured me and provided me with many possibilities to find
new results. I always found his door open to discuss the many research issues that bothered
me, and left his room again with new ideas to process.

Besides working with Benne, I obtained most of my research results in cooperation
with Alexander May. I have been very lucky to work together with Alex, and was able
to profit from his expertise (I hardly traveled anywhere without his thesis in my bag).
Besides his knowledge of the subject, I also learnt from him important skills like writing
good introductions and programming the experiments.

The remaining members of my Ph.D. committee are professors Ronald Cramer, Tanja
Lange, Arjen Lenstra, Eric Verheul, and the chairman, prof. Kees van Hee. Their work in
reading my thesis and commenting on it is greatly appreciated. Arjen already influenced
my work in a positive way in an earlier stage, by suggesting changes to the papers I
submitted, and by commenting on the direction in which my research should go.

Other people who have read my thesis and have given me valuable comments are
Reinier Bröker, Mehmet Kiraz, and Joris De Kaey.

Throughout my short scientific career I have had the opportunity to discuss with many
other researchers about my topic. I would specifically like to thank Steven Galbraith,
Jason Hinek, Phong Nguyen, Jean-Sébastien Coron, Claus Diem, Aurelie Bauer, and the
many people in the ECRYPT-AZTEC Cryptanalysis group for the helpful discussions. The
existence of the ECRYPT-labs, summerschools, etc. have made it very easy to learn from
other researchers, ranging from professors to other Ph.D. students, and this has been very
valuable to me. The same statement holds for the activities, meetings, and minicourses
organized by the Dutch clusters EIDMA and DIAMANT. I’m grateful for the stipends
that I received from the IACR in order to be able to attend and give presentations at
Eurocrypt’05, Asiacrypt’06, and Crypto’07.

I have already mentioned the pleasant working atmosphere inside the Coding theory &
Cryptology group in Eindhoven. Discussion sessions with Henk, Benne, Berry, Ruud, Tan-
ja, and Dan, (‘the supervisors’), and Andrey, Mehmet, Reza, José, Peter, and Christiane
(‘the students’) were a nice way to think about the open research problems and the pos-
sibilities to pursue, and I liked learning about the other students’ research topics in the
process. Mehmet has been a great ‘roommate’ at the university, and I enjoyed his company
throughout the last 31

2
years. Bram, Wil, Anita and Henny completed this great group,

with tea&cake-meetings on Tuesdays, outings, and the yearly dinner at Henk’s.

129

As a nice bonus, we share our floor in the building with the members of Arjeh Cohen’s
Discrete Algebra and Geometry group, and I spent many nice lunches with Tim, Jos, Erik,
Rikko, Mark, Jan-Willem, Tyrell, Dan, and Jan (in order of pick-up). The contact with
these people and their knowledge of very hard mathematics gave me the opportunity to
ask silly questions sometimes and get decent answers in return.

From the DAG-students, I would specifically like to thank Tim for his friendship (and
for introducing me to a fellow student), and Rikko for sharing my NS-disasters.

During the organization of the Studygroup Mathematics with Industry, a yearly event
that I would recommend to any mathematician, it was a good experience to work together
with Mark, Jaap, Remco, Erik, Georg, and Tim.

From the people that were really involved in the work related to my thesis, to the
people that contributed to a good working environment, we now come to the people that
have nothing to do with my university life but are of great importance to me all the same.

Most importantly, I’ve had an enormous support from my family, that is, my parents
and my sister Mieke, in the last 4 years. I’m extremely happy to have such a great home
base to rely on, and I owe them for everything that I have achieved in my life.

I’m thankful for my friends for the many enjoyable moments, and for understanding
my full schedule in the last year.

And last but not least, I’ve had the luck to meet Joris, who has given me his love and
support, a new and welcoming group of friends and family in Belgium, a funny accent, and
so much more...

130

Curriculum Vitae

Ellen Jochemsz was born on June 23, 1980 in Rijnsburg, The Netherlands.
In 1997, she graduated from the secondary school Northgo in Noordwijk, and started

her studies in mathematics at the Vrije Universiteit Amsterdam, where she finished her
masters in 2002 with specialization ‘discrete mathematics, coding theory and cryptology’.
Her masters thesis was titled ‘Goppa codes and the McEliece cryptosystem’, and was
supervised by dr. Evert Wattel. During her studies, she worked as a teaching assistant,
giving instructions for several mathematics courses at the university.

From 2002 to 2003, she worked as a teacher in mathematics at the Fons Vitae Lyceum in
Amsterdam. In this period, she completed the universitary teachers program, and obtained
her diploma for teaching mathematics at any level of the secondary school.

From 2003 to 2007, she was a Ph.D. student in the Coding theory & Cryptology group
of the Technische Universiteit Eindhoven, under the supervision of prof. Henk van Tilborg
and dr. Benne de Weger. The present thesis is the result of her work in this period.

Her research interests are in the area of applied mathematics, in particular: discrete
mathematics, cryptology, coding theory, and discrete optimization.

131

	Contents
	1. Introduction
	2. The RSA cryptosystem
	3. Small roots of polynomials
	4. Partial key exposure attacks on RSA
	5. Attacks on RSA-CRT variants
	6. Attacks on Common Prime RSA
	7. Conclusions & open questions
	Bibliography
	Index
	Nederlandse samenvatting
	Summary
	Acknowledgements
	Curriculum Vitae

