
Theorem. For n = p q where p, q are distinct odd primes, the number of Euler liars in Z∗
n equals

1
2d

2, where d = gcd(p− 1, q − 1).

Proof. Write p − 1 = a d and q − 1 = b d. Note that n − 1 = C d where C = a + b + a b d, so
p− 1 | a (n− 1) and q − 1 | b (n− 1). One might say that composite squarefree integers with only
two prime factors come sort of close to Korselt’s criterion for Carmichael numbers, failing only by
factors a, b for the two prime factors p, q respectively. Note that a and b are coprime, C is coprime
to both a and b, and

a (n− 1)

p− 1
=

b (n− 1)

q − 1
= C. (1)

If x ∈ Z∗
n is an Euler liar then xn−1 ≡ 1 (mod n). Let gp be a primitive root (mod p), and

gq one (mod q). Let Ap, Aq ∈ Z∗
n satisfy Ap ≡ gp (mod p), Ap ≡ 1 (mod q), Aq ≡ 1 (mod p),

Aq ≡ gq (mod q). Then every x ∈ Z∗
n can be written as x ≡ A

ep
p A

eq
q (mod n) for a unique

(ep, eq) ∈ Zp−1 × Zq−1. Because ordn(Ap) = p− 1 and ordn(Aq) = q − 1 we have that

xn−1 ≡ 1 (mod n) if and only if p− 1 | ep (n− 1) and q − 1 | eq (n− 1)

if and only if a d | ep (n− 1) and b d | eq (n− 1)

if and only if a | ep C and b | eq C
if and only if a | ep and b | eq,

because, as we saw abov,e C is coprime to a and b. So we have ep = a fp and eq = b fq, where

fp, fq ∈ {0, 1, . . . , d−1}, because p− 1

a
=

q − 1

b
= d. Clearly there are exactly

ϕ(n)

a b
= d2 elements

x ∈ Z∗
n with xn−1 ≡ 1 (mod n).

It follows that x(n−1)/2 ≡ A
a (n−1) fp/2
p A

b (n−1) fq/2
q (mod n), so by (1)

x(n−1)/2 ≡ A(p−1)/2 fp C
p A(q−1)/2 fq C

q (mod n). (2)

Clearly

(
Ap

n

)
=

(
Aq

n

)
= −1, so

(
x

n

)
= (−1)ep+eq , so

(
x

n

)
= (−1)a fp+b fq . (3)

We now distinguish two cases: a and b are both odd, or one of them is even.

If a and b are both odd, then C is even, and from (2) we get A
(p−1)/2 fp C
p ≡ 1 (mod n) and

A
(q−1)/2 fq C
q ≡ 1 (mod n), so x(n−1)/2 ≡ 1 (mod n), independent of fp, fq. But from (3)

(
x

n

)
=

(−1)a fp+b fq = (−1)fp+fq , and this is equally often +1 as −1. This shows that in this case the
number of Euler liars is 1

2d
2.

If one of a, b is even, then C is odd, and the situation is different. There are four square roots

of 1 in Z∗
n, namely ±1 and ±α where α ≡ A

(p−1)/2
p ≡ −A

(q−1)/2
q (mod n). With this shorthand

notation we find from (2) x(n−1)/2 ≡ (−1)fq C α(fp+fq)C ≡ (−1)fq αfp+fq (mod n). When fp + fq
is odd we get x(n−1)/2 ≡ ±α ̸≡ ±1 (mod n), so then x is an Euler witness. And when fp + fq
is even then we get x(n−1)/2 ≡ (−1)fq (mod n). But from (3) using fp ≡ fq (mod 2) we get(
x

n

)
= (−1)(a+b) fq = (−1)fq , so then x is an Euler liar. Both possibilities for fp + fq occur

equally often because fp, fq ∈ {0, 1, . . . , d− 1} and d is even. This shows that also in this case the
number of Euler liars is 1

2d
2.


