CHAPTER 1. INTRODUCTION.

1.1. Algorithms for diophantine equations.

This thesis deals with certain types of diophantine equations. An equation is
a mathematical formula, expressing equality of two expressions that involve
one or more unknowns (variables). Solving an equation means finding all
solutions, i.e. the values that can be substituted for the unknowns such that
the equation becomes a true statement. An equation is called a diophantine
equation if the solutions are restricted to be integers in some sense,
usually the ordinary rational integers (elements of Z ) or some subset of

that.

Examples of diophantine equations that will be studied in this thesis are

x2 +7=2"
(the Ramanujan-Nagell equation, having only the solutions given by

(*x,n) = (1,3), (3,4), (5,5, (11,7), (181,15) , see Chapter 4);
VSR At

(a purely exponential equation, having only the solutions (x,y,z) = (1,0,0),

(2,1,0), (3,1,1), (5,3,1), (7,1,3) , see Chapter 6);

y2 = x3 - 4-x + 1
(an elliptic equation, having only 22 solutions, of which the largest are
(x,y) = (1274,345473) , see Chapter 8). The three examples mentioned here are
only examples of classes of equations which we study. We also study (in
Chapter 5) a diophantine inequality (a formula expressing that one expression
is larger than another, where solutions are again restricted to integers). In
the following discussion the statements about diophantine equations also hold

for this inequality.

What the equations treated in this book have in common is that they can all

be solved by the same method. This method consists essentially of three



parts: a transformation step, a application of the Gelfond-Baker theory, and

a diophantine approximation step. We explain these steps briefly.

First, one transforms the equation to a purely exponential equation or
inequality, i.e. a diophantine equation or inequality where the unknowns are
all in the exponents, such as in the second example given above. Each type
of diophantine equation needs a particular kind of transformation, so that it
is difficult to be more specific at this point. In some instances, such as in
the second example above, this transformation is easy, if not trivial. In
other instances, as in the first example above, it uses some arguments from

algebraic number theory, or, as in the third example above, a lot of them.

In general, such a purely exponential equation has the form
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and a corresponding purely exponential inequality looks like

t %in
.Z ci-'ﬂ a, < minfe ﬂ ulJ (1.2)
i=1 j=1 i J =1
where t, Siv Cyo aij' § are constants with ¢t, s; elN, 0<§ <1, and
s aij belong to some algebraic extension of @ , and where the nij are

the unknowns in Z . We now suppose that the number of terms ¢t on the left
hand side is equal to 2. This restriction is essential for the second step,
in which we wuse results from the so-called theory of linear forms in
logarithms, also known as the Gelfond-Baker theory. (Some special exponential
equations with more terms can also be treated by the Gelfond-Baker method, by
reducing them to exponential inequalities with two terms, cf. Stroeker and

Tijdeman [1982], Alex [1985a], [1985b], Tijdeman and Wang [1987].)

An exponential equation or inequality such as (1.1) or (1.2) gives rise to a
linear form in logarithms

m
A= log B, + ) n, -log B, ,
0 . i i
i=1
where the ﬁi are algebraic constants, and the n, are integral unknowns.
Here, the logarithms can be real or complex, or can be p-adic. This relation
between equation and linear form in logarithms is such that for a large

solution of the equation the linear form is extremely close to zero (in the



real or complex sense, or in the p-adic sense). The Gelfond-Baker theory
provides effectively computable lower bounds for the absolute wvalues
(respectively p-adic values) of such linear forms in logarithms of algebraic
numbers. In many cases these bounds have been explicitly computed. Comparing
the so-found upper and lower bounds it is possible to obtain explicit upper
bounds for the solutions of the exponential diophantine equation or
inequality, leading to upper bounds for the solutions of the original
equation. This second step, unlike the first (transformation) step, is of a

rather general nature.

We remark that many authors have given effectively computable upper bounds
for the solutions of a wide variety of diophantine equations, by applying the
method sketched above. For a survey, see Shorey and Tijdeman {1986]. Often
these authors were satisfied with the knowledge of the existence of such
bounds, and they did not actually compute them. If they computed bounds, they
did not always determine all the solutions. In this thesis, solving an

equation will always mean: explicitly finding all the solutions.

After the second step, the problem of solving the diophantine equation is
reduced to a finite problem, which is the treated in the third part of the
method. Namely, since we have found explicit upper bounds for the absolute
values of the (integral) unknowns, we have to check only finitely many
possibilities for the unknowns. However, the word finite does not mean the
same as small or trivial. In fact, the constants appearing in the bounds that
the Gelfond-Baker theory provides for linear forms in logarithms are rather
large. Therefore, in practice the upper bounds that can be obtained in this
way for the solutions of purely exponential equations can be for instance as
large as 1040. This is far too large to admit simple enumeration of all the

possibilities, even with the fastest of computers today.

Notwithstanding, it is generally assumed that the upper bounds found in this
way are far from the actual largest solution. Therefore, it is worthwile to
search for methods to reduce these upper bounds to a size that can be more
easily handled. Often it is possible to devise such a method using directly
certain properties of the original diophantine equation, for example that
large solutions must satisfy certain congruences modulo large numbers, or
some reciprocity condition (for some examples, see Grinstead [1978], Brown
[1985], Pinch [1987], and Pethoé [1983]). The disadvantage of such methods is

that they work only for that particular type of diophantine equation, so that



in general for each type of equation a new reduction method must be devised.
It would therefore be interesting to have methods for reducing upper bounds
for the solutions of inequalities for linear forms in logarithms. They would
be useful for solving any type of diophantine problem that leads to such

inequalities.

Such methods are provided by that part of the theory of diophantine
approximation that is concerned with studying how close to zero a linear form
can be for given values of the variables. Recently important progress has
been made in this field, leading to practically efficient algorithms, which
can be employed for many diophantine equations to show that in a certain
interval [XI'XO] no solutions exist. Usually X is of the order of

1

magnitude of log XO . When for XO the theoretical upper bound for the
solutions is substituted, a new upper bound X1 is found. For many equations

the upper bound X is well within reach of practical application of these

0
algorithms, within only a few minutes of computer time. This thus leads in
practice to methods for finding all the solutions of many types of
diophantine equations, for which alternative methods have not yet been found

or employed with success.

It is mainly in this third part of the method that new developments can be
reported. The arguments we use in the first and second parts are mainly
classical. They are applied to types of equations that have been studied

before, and also to new types of equations.

The method outlined above, and used in this thesis to solve many examples of
various diophantine equations, is of an "algorithmic" nature. In a sense it
lies between "ad hoc" methods and “"theoretical" methods. This we shall
explain below. Let a set of diophantine equations with an unspecified
parameter in it be given. As an example of such a set, consider the
generalized Ramanujan-Nagell equation x2 + D = 2" | where D is a

parameter, and X, n are the unknowns.

An ad hoc method is a method for solving the equation for specific values of
the parameters only. However, it may not work at all for other than these
particular values. The first example of solving an equation of the type
x2 +D = 2" occurring in the literature is that by Nagell {1948] of D =7

The method he used is of an ad hoc nature, since it depends heavily on the

special choice of 7 for the parameter D
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A theoretical method is capable of proving results that hold for some large
set of values of the parameters. The Gelfond-Baker theory is of a theoretical
nature, since it yields upper bounds for the solutions of many equations in
terms of their parameters. Other examples are the theory of quadratic

reciprocity, that shows that x2 + D - 2" has no solutions at all if D is

odd, at least 5, and not congruent to 7 (mod 8) , and the theory of
hypergeometric functions, which Beukers ([1981] wused to show that the
solutions (x,n) of x2 + D = 2" satisfy n < 435 + 10-210g|D| , and if
|ID] < 296 then moreover n < 18 + 2~210g[D[ . Theoretical methods are often

too general to be able to produce all the solutions of a given equation.

An algorithmic method is a method that is guaranteed to work for any set of
values of the parameters, but has to be applied separately to each particular
set of parameter values, in order to produce all the solutions. The methods
used in this thesis are mainly of such an algorithmic nature. For the
equation x2 + D = 2" (and actually for a more general equation) we will
give an algorithmic method in Chapter 4. In fact, since Beukers'’ above-
mentioned result provides a small upper bound for the solutions, it can be
made algorithmic by providing a simple method of enumerating all the
solutions below the upper bound. In order to make the Gelfond-Baker theory
algorithmic, enumeration of all possibilities is impractical. Therefore more
ingenious ways of determining all the solutions below a large upper bound
have to be found. We remark that Beukers’ method for the more general
equation x2 + D = pn also has an ad hoc aspect, since it does not work for

any value of p . Our method of Chapter 4 does not have this disadvantage.

An ideal towards which one might strive in solving diophantine equations is
to devise a computer algorithm, which only has to be fed with the parameters
of the equation, and after a short time gives a list of all the solutions as
output. The user should have a guarantee (in the strictest, mathematical

sense of proof), that no solutions have been missed.

At first sight the method outlined above, and described in this dissertation,
seems to be a good candidate to be developed into such a general applicable
algorithm. Namely, the second step is of a quite general nature, providing
upper bounds for exponential diophantine equations that are explicit in the

parameters of the equation. Also the third step, the algorithmic diophantine
approximation part, works in principle for any set of values substituted for

the parameters. However, the computations have to be performed separately for
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each particular set of values.

The main difficulties in devising such a ‘diophantine machine’ are in the
first part of the method outlined above, especially if some algebraic number
theory 1is used. Developments taking place in the theory of algorithmic
algebraic number theory on computing fundamental wunits and on finding
factorizations of prime numbers in algebraic extensions, are of importance
here. We believe that when suitable algorithms of this kind are available, it
will be possible in principle to make such a ‘diophantine machine’. The
generality of such an algorithm is restricted by the generality of the first
step, the transformation to the linear form in logarithms. In this thesis we
use computer algorithms only if the magnitude of the computational tasks
makes this necessary, and keep to "manual” work otherwise. In this way we

also try to keep the presentation of the methods lucid.

The reader should be aware of the fact that the computer programs and their
results are part of the proofs of many of our theorems on specific
diophantine equations. It is however impossible to publish all details of
these programs and computations. The interested reader may cbtain the details

from the author by request, and is invited to check the computations himself.

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine
equations for which computable upper bounds for the solutions can be found
using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman
and Schinzel ({1977], and Stroeker and Tijdeman [1982]). Some of these
equations can be completely solved by the methods described in this thesis,
among which there are purely exponential equations, equations involving
binary recurrence sequences, and Thue equations and Thue-Mahler equations.
Especially the latter two are of impertance in various other parts of number
theory. For example, they are the key to solving Mordell equations and
various equations arising in algebraic number theory. The Gelfond-Baker
method was used to actually solve a diophantine equation for the first time
in the work of Baker and Davenport [1969], who solved the system of

diophantine equations

3'x2 -2 = y2 , 8'x2 -7 = 22

Other equations occurring in the literature for which upper bounds for the

solutions can be computed, cannot be treated as easily by our algorithmic
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methods, because the application of the theory of linear forms in logarithms
is more complicated for these equations, and moreover the upper bounds are
essentially too large. An example of this kind is the Catalan equation
a® - by =1 in integers a, b, x, y , all =2 2 . Catalan conjectured in 1844
that this equation has only the solution (a,b,x,y) = (3,2,2,3) . Tijdeman
[1976] proved that the solutions of the Catalan equation are bounded by a
computable number. This number can be taken to be exp(exp(exp(exp(730)))) ,
according to Langevin [1976]. However, we fail to see how the methods that we

describe in the forthcoming chapters can be applied for completely solving

the Catalan equation.

Another diophantine equation, that for centuries has attracted the attention
of many mathematicians, is the Fermat equation X"+ yn -z in integers
X, ¥, 2, n, with n =3 and =x-y-z 0 . It is conjectured to have no
solutions. Faltings [1983] proved that for fixed n the number of solutions
is finite. His proof is ineffective, and not based on the Gelfond-Baker
theory. The Gelfond-Baker theory seems not to be strong enough to dela with
the Fermat equation in its full generality, not even if n 1is fixed. For

partial results on the Fermat equation that have been obtained using this

theory, see Tijdeman [1985] and Chapter 11 of Shorey and Tijdeman [1986].

We remark that for many diophantine equations recently important progress
has been made in determining upper bounds for the number of solutions. See
Evertse [1983] and Evertse, Gyory, Stewart and Tijdeman [1987] for a survey.
These results are often remarkably sharp, but ineffective, so that they

cannot be used for actually finding the solutions.

To conclude this section we give an overview of the remaining chapters of
this thesis. It is divided into three parts: Chapter 1 is introductory,
Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal

with various types of diophantine equations.

Sections 1.2 to 1.5 give a short introduction to the Gelfond-Baker theory,
diophantine approximation theory, the algorithmic aspects of diophantine
approximation, and the procedure for reducing upper bounds, respectively, for
the non-specialist. Chapter 2 contains the preliminary results that we need
from algebraic number theory and from the theory of p-adic numbers and
functions, and quotes in full detail the theorems from the Gelfond-Baker

theory which we need. It concludes with some remarks on numerical methods.
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Chapter 3 gives in detail the algorithms in the field of diophantine

approximation theory that we apply in the subsequent chapters.

The remaining Chapters 4 to 8 are each devoted to a certain type of

diophantine equation. Let Py o P, be a fixed set of distinct primes.
Let S be the set of positive integers composed of primes S,
only.

Chapter 4 deals with elements of binary recurrence sequences ("generalized
Fibonacci sequences") that are in S , and gives their application to mixed
quadratic-exponential equations, such as the generalized Ramanujan-Nagell
equation x2 + keSS ( k fixed). The diophantine approximation part of this
chapter is interesting for two reasons: the p-adic approximation is very
simple. and in the case of the recurrence having negative discriminant, a
nice interplay of p-adic and real/complex approximation arguments occurs. The
research for Chapter 4 was done partly in cooperation with A. Pethdé from
Debrecen. The results have been published in Pethé and de Weger [1986] and de

Weger [1986b],

Chapter 5 deals with the diophantine inequality 0 < x - y < y6 , where x, vy
are in 5 , ard § € (0,1) 1is fixed. Chapter 6 deals with x + y = z , where
X, v, z € S§ , which can be considered as the p-adic analogue of the
inequality of Chapter 5. These two equations are the simplest examples of
diophantine equations that can be treated by our method. Since they are
already purely exponential equations, the first (transformation) step is
trivial. So the linear forms in logarithms are directly related to the
equations themselves. Therefore they serve as good examples to get a clear
understanding of the diophantine approximation part of our method. The
results of these chapters have been published in de Weger [19873].

Chapter 7 studies the equation x + y = 22 , where x, vyeS , and z € 7
This equation is a further generalization of the generalized Ramanujan-Nagell

equation, studied in Chapter 4.

In Chapter 8 a procedure is given to solve Thue equations, that works in
principle for Thue equations of any degree. It is applied to find all
integral points on the elliptic curve y2 = x3 - 4-x + 1 . We also mention
briefly how Thue-Mahler equations can be dealt with. This chapter has been

written jointly with N. Tzanakis from Iraklion. The results have been
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published in Tzanakis and de Weger [1987], and in de Weger [1987b].

1.2. The Gelfond-Baker method.

In Section 1.1 we have explained that before applying the Gelfond-Baker
method to some diophantine equation, the equation should be transformed into
a purely exponential diophantine equation or inequality with not too many
terms (cf. (1.1), (1.2)). In this section we sketch the arguments from the
Gelfond-Baker theory that lead to upper bounds for the variables of this

exponential equation/inequality.

Let us first treat the case of the inequality (1.2). It may be assumed to
have the form

s
. U a; - 1 < Co-exp(—6'N) ,
where the a, are fixed algebraic numbers, N = max[nil , and CO, 5§ are
positive constants. In the examples we study, we encounter one of the
following two cases: either all a, are real, or |ai| =1 for all i . In
the real case, if N 1is large enough, the linear form in logarithms

s

A = log|a0| + iElnitlog|ai|

must satisfy

|A] < Cé~exp(—5~N) (1.3)

for some Cé . In the complex case, the same inequality (1.3) follows for the

linear form

I >0

A = Log a, +

0 ni-Log ay + k-Log(-1)

i=]1

s
+ .Z ni-Arg a, + k-m ] ,
i=1

= i-( Arg ay

where the Log and Arg functions take their principal values. Now we can
apply one of the many results from the Gelfond-Baker theory, giving an

explicit lower bound for {[A] in terms of N , e.g. the following theorem.
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THEOREM 1.1. (Baker [1972]). Let A be as above. There exist computable

constants Cl' C2 , depending on the a; only, such that if A » O then

[A] > exp(—(c1+c2-1og Ny .

We know that A = O . Combining (1.3) and Theorem 1.1 we obtain

C, + log C/ C
N < 1 0 . 2

3 < log N .

It follows that N 1is bounded from above.

Next, consider the exponential equation (1.1). We can write it as

s i T mj
ag: Ml -1 =85 187

=1 i=1
where the a, ﬁj are fixed algebraic numbers. Let Hp be the maximum of
the |n.|, |mj| where i, j run through the set of indices for which a;
resp. fB. are non-units. Let H be the maximum of the |ni|, |mj| where
i, j run through the set of all indices. Suppose that p is a rational
prime lying above ﬂj for some j . There are constants ¢ such that

n,
i
a; —1) < eyt cz-mj

[ X
Jur

ordp(ao-i

Assuming that ordp(ai) = 0 for all i , we may write down a p-adic linear

form in logarithms

A = log «a

%0 + ni~1ogpai ,

[ R}

i=1

for which, if mj is large enough, it follows that

ordp(A) < ¢y + c2~mj . (1.4)

We are now in a position to apply the following result from the p-adic

Gelfond-Baker theory. Here, N = max|ni|

THEOREM 1.2. (van der Poorten [1977], Yu [1987a]). Let A , p be as above.

There exist computable constants C3, Ca , depending only on the a; and on

p , such that if A » O then

ordp(A) < C, + Ca-log N .

3
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Applying (1.4) and Theorem 1.2 for all possible p we obtain constants C!

3
CA with

Hp < C3 + C4~1og H

If H < CS-Hp for some constant C5 , then this immediately yields an upper

bound for H . If H > CS-Hp , then it can be shown that there exists a

conjugate of the as ﬂj , denoted with a prime sign, for which
r m,
|85 11 83| < exp(-cgom
0 j=1 j 6

for a constant C6 (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and

Tijdeman [1986]). Now we can apply Theorem 1.1. This yields
n,

s
6‘ M ail—l‘ > exp(—(C7+C8-log H)] .
i=1

a
It follows that H is bounded from above.

If it happens that none of the @, ﬂj are units, then of course the

application of Theorem 1.2 suffices.

We remark that, in order to be able to completely solve a diophantine
equation, it 1is crucial that all constants can be computed explicitly.
Therefore we can only use the bounds from the Gelfond-Baker theory that are

completely explicit. We give details of such theorems in Section 2.4.

1.3. Theoretical diophantine approximation.

In this section we briefly mention some results from diophantine
approximation theory, thus giving a background to the next section. We refer
to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright
[19879] (Chapters XI and XXIII), for further details.

The simplest form of diophantine approximation in the real case is that of
approximation of a real number ¢ by rational numbers p/q . It is well
known that if © 1is irrational, then there exist infinitely many solutions

(p.q) € I>xN with (p,q) = 1 of the diophantine inequality

-2
lo-21<a
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All convergents from the continued fraction expansion of 9 are such

solutions. The convergents are simple to compute for any particular ¢ € R

One way of generalizing this is to study simultaneous approximations to a set

of real numbers 61, R 6n , l.e. rational approximations to 61 all

having the same denominator. It is well known that the system of inequalities

Py -
[0, - = | <q /™ o 5 1 0
1 q
has infinitely many solutions (pl,...,pn,q) if at least one of the 01 is

irrational. But it is much harder to find solutions of such inequalities than
in the case n = 1 . Some multi-dimensional continued fraction algorithms
have been devised (cf. Brentjes [1981] for a survey), but they seem not to
have the desired simplicity and generality. We shall see later how we can

apply the so-called L3—algorithm to this problem.

Another way of generalizing the simplest case of diophantine approximation is

to study linear forms, such as

m

L= Ygq,.9, ,

j=1 J 3]
where 61, e, 6m are given real numbers, and pr e q, are the
unknowns in Z . Put Q = lnaxlqi| . A classical theorem guarantees the
existence of a solution (p,ql,...,qm) of the inequality
—m

| L-p ] <Q

Note that the case m = 1 becomes our first inequality on dividing by

q =9 - Also in this case the L3«algorithm is very useful, as we shall see

below.
We can incorporate the two generalizations above in a further generalization,

that of simultaneous approximation of linear forms. Let real numbers ﬁij be

given for i =1, ..., n, j=1, ..., m . Put

A celebrated theorem of Minkowski states that there exists a solution

(pl,...,pn,ql,...,qm) of the system of inequalities
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-m/n :
| Li - Py ] <Q for 1 1, ..., n
As we shall show in Section 1.4, the L3—algorithm may be applied to this
general form. We actually compute solutions of systems of inequalities that
are slightly weaker in the sense that the right hand side is multiplied by a

constant larger than 1.

We now consider inhomogeneous approximation. This means that for all i

there is an inhomogeneous term ﬂi in the linear form Li , viz.

Again, there exists a constant c¢ such that the system

L, -p, | <cQ™"

i for i =1, ..., n,

under some independence condition on the A, and ﬂij , has a solution. This

i
is Kronecker's theorem. The simplest case m = n =1 comes down to

-1
l 98 -p+p | <c-q

To conclude this section, we remark that there is a p-adic analogue of this

theory of diophantine approximation, founded by Mahler and Lutz. If we

replace in the above considerations R by @p , the absolute value |[-| by
the p-adic value |-|p , and the measure Q for an approximation
(pl,...,pn,ql,..‘,qm) by any convex norm Q(pl""’pn’ql""'qm) , then the

p-adic analogues of the theorems of Minkowski and Kronecker are essentially
analogous tc the above mentioned results in the real case. See Koksma [1937]

for references to Mahler’s work, and Lutz [1951].

1.4. Computational diophantine approximation.

In this section we give some idea of practically solving the diophantine
approximation problems that we encounter in solving diophantine equations. In
this section we give no rigorous treatment. We neglect worst cases, and
concentrate on how things are expected to work, and appear to work in
practice. For a more rigorous theoretical treatment we refer to a forthcoming

publication by Tijdeman, Wang and the present author. In the subsequent
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chapters of this thesis many examples are given, showing that our methods are
indeed useful in practice. Applying the method in practice may be the best

way of acquiring the necessary Fingerspitzengefuhl for the method.

We shall deal with the following computational diophantine approximation
problem. Let Bij’ ﬁi € R be given, and let | S DI be
integral unknowns with Q = max|qj| . Let Li be as above. Let a positive
constant Q0 , assumed to be a rather large number, 1050 say, be given. Find

a lower bound for the value of

max | Ly - Py |
i
where (pl,...,pn,ql,...,qm) runs through the set of values with Q < QO
From the theory outlined in Section 1.3 it follows that one will be satisfied

if this lower bound is of the size Qam/n For the p-adic case an analogous

problem may be formulated.

Related problems in diophantine approximation theory are those of actually
finding a good or the best solution of max]Li—pil < ¢ for a fixed ¢ > 0

As we shall see, the L3—algorithm is a very useful tool for finding good
solutions. The problem of finding the best solution however seems to be
essentially more difficult. We note that in most of our applications of
solving diophantine equations it suffices to have a suitable lower bound for

max}Li—pi|

The computational tool that we use to solve the afore-mentioned problems is
the so-called L3—1attice basis reduction algorithm, described in Lenstra,
Lenstra and Lovdsz [1982]. We shall give details of this algorithm in Chapter
3. Below we briefly indicate how it can be used to solve diophantine

approximation problems.

Let T be a lattice in R" . The L3—a1gorithm accepts as input an arbitrary

basis b e, bn of T . As output it gives another basis Sy wen & of

1’ ' =n

the same lattice I , that is a so-called reduced basis. The concept reduced
means something like nearly orthogonal. From a reduced basis it is possible
to compute lower bounds for the following two quantities: (i), the length of

the non-zero lattice point that is nearest to the origin, viz.

LT) = min [x]| ,
O=xerl’
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(cf. Llenstra, Lenstra and Lovdsz [1982], Proposition (1.11) and our Lemma
3.4), (ii), for any given point y € R" , the distance from y to the

nearest lattice point, viz.

LT, y) = min |x-y] ,
xeT
(cf. our Lemmas 3.5 and 3.6). This algorithm enjoys the property that these
lower bounds are usually near to the actual minimal solutions. In a typical
situation, where the lattice is not too distorted, the vectors <5 of the
reduced basis all have about the same length, which is of the order of

magnitude of
det(ry/m

The value of {£(I') as well as the lower bounds computed for it, are about as
large as that. If y 1is not too close to a lattice point, the same holds for
E(T,y) . Moreover, the running time of the algorithm is good, both in the
theoretical sense (it 1is polynomial-time in the 1length of the input-

parameters), and in the practical sense.

To solve the problem of finding a lower bounds for max|Li-pi| as formulated

above, we take the lattice T as follows. Let € be an integer, at least as

large as Qé+m/n The lattice T , of dimension n + m , is defined by
specifying a basis, namely the column vectors bl' e, hn+m of the matrix
[ 1
%]
2 1
8 = [Cvﬁll] [C-@lm] -C
%]
[C-ﬂnl] [C-ﬁnm] -C

(The symbol @ means that all not explicitly given entries are zero).
Applying the L3—a1gorithm to this lattice we find a reduced basis, of which
the basis vectors will have lengths of about Cn/(m+n) , which is roughly the
size of QO . Generally speaking, the larger C is, the larger the lengths
of the basis vectors of a reduced basis will be (and the larger the lower

bounds for €(I') and {(I',y) will be).

Let us first treat the homogeneous case, i.e. ﬂi = 0 for all i . Consider

the lattice point x = 8«[q1,...,qm,pl,...pn]T . It is equal to
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where

From the application of the L3—a1gorichm we find a lower bound for 4£(I') , of
size QO . We assume it to be large enough (if this is not the case, we try a
somewhat larger value for C , and perform the L3—algorithm again for the

lattice defined for this C ). So we may assume that there is a small

constant ¢ such that
n
= 2 "2 2 2
‘X (L,-Cop)" 2 LI)" - m-Qy > ¢;-Q
i=1
We have |ii—C-Lil < m-QO , so we may assume that for small constants cy Cy

-1 -
-C -max|Li—C~pi| > c3-QO/C

> -p.| >
maV.[Li pll c,

By the choice of G this last bound has the required size.

Next, we study the inhomogeneous case, where not all ﬂi are zero. We take
the same lattice I as in the homogeneous case (note that the lattice

definition depends only on the 6ij and the C ). Consider the point
= (0, ,0,-(C ), —lep )T
Yy = M,...,Y, IR n

From the reduced basis found by the L3—algorithm we have a lower becund for

€(T,y) . Assume that it is large enough, and of size Qo . We take the same

lattice point x = B-(ql,...,qm,pl,...pn)T as in the homogeneous case. Then
- - T
X-Y-= [ql,‘..,qm,Ll—C~pl,...,Ln—C-pn] ,
where
N m
L - [CB]+ jzlqj-[c-ﬂij] for 1 =1, ..., n

The same reasoning as in the homogeneous case now yields the desired result.
. 3 R -

Note that if we have performed the L -algorithm once for given 6ij , we may

use the result to treat the homogeneous case, and many inhomogeneous cases

with different ﬂi 's as well, as long as the ﬂij’s are the same.
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The above process describes how to find lower bounds for systems of
diophantine inequalities. It will be clear from the above that it is not
difficult to find good solutions, i.e. (ql,...,qm, pl,...,pn) with Q < QO
and max[Li—pi) near to the best possible value. In particular, the basis
vectors of a reduced basis are adequate for the homogeneous case, and for the
inhomogeneous case the lattice points near to y will be such solutions. The
lattice points near to y are not difficult to find once a reduced basis is
available. Specifically, if sl, e, sn € R are the coordinates of y with

respect to a reduced basis, then one may take the lattice points with

coordinates ti € Z that are near to 4 (i=1, ..., n).
In the definition of the matrix above the expressions [C~6ij] occur. Using
these expressions we have constructed a lattice r that is completely

integral, i.e. T C ™" . The La—algorithm can be adapted to work exact for
those lattices, so that younding-off errors are avoided (cf. Section 3.5).
The "errors" occur in the difference between the ii and the C-Li , and are
thus kept under control by choosing the proper constants €1y Sy Cg - of
course one should take care to have the numerical values of the 0ij and the
B. correct to a sufficient precision. We shall discuss such numerical

i
problems briefly in Section 2.5.

A possible variation of the above diophantine approximation problem is to

give weights to the linear forms Li , i.e. to look for a lower bound for

where the w. are fixed positive numbers. This situation can be dealt with
easily by replacing the C ‘s in the (n+i) th row of the matrix by proper

constants depending on v,

Another variation is the problem where not all the variables qj have the

same upper bound QO . To illustrate this, assume that n =1 | and that

9,
1

=
]

I8
L0

Now suppose that for some Q, > Q, (it will be handy to have Q Q, ) we
pp 1 2 y 2 1

are interested in the solutions with



lq.| = Q2 for j = m1+1, .., m,

J
lpl = Q,
m m-m +1
Next let C be of the size of Ql ~Q2 , and take the matrix
[ 1
7 1}
o Q%
Q,/Q,
[c-o,] ... [c-ﬁml] (c 6m1+1] .. [C ] -C-Q/Q,
For a lattice point (ql,...,qm,i—C-p)T we expect that |L-C-p| > c-Q1 for
—(ml—l) —(m—m1+l)
some ¢ . It follows that |L-p| > c'-Ql/C > c"-Ql ~Q2 for some
c¢’, c¢" . This wvariant 1is wuseful when a combination of real and p-adic

techniques is used, such as for the Thue-Mahler equation (see Section 8.6).

We conclude this section by giving the analogous method of p-adic diophantine

approximation. We assume that the 0ij' ﬂi are in @p , and, moreover, that
they are p-adic integers. Let NO =N uU {0} . For any p-adic integer vy and
any p € NO we denote by 7(”) the unique rational integer such that

¥ o= 7(#) (mod p#) , 0 =< 7(#) < p“ .

Let p € N be such that p’J is roughly the same size as Qé+m/n , and

assume that p is large enough (it is the analogue of the constant C in the
real case above). Take for T the lattice of which a basis is given by the

column vectors of the matrix

[ 1
%)
@ 1
_ (») () _p
B = 611 A 61m P
: : & .

) (B n
6n1 . 6nm P

Consider the lattice point
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T T
B'(ql”"’qm’zl""'zn) = (ql,...,qm,pl,...,pn)

Then it is obvious that

- ™) p
Pi = JE;*J"% *Zp

Hence the lattice I' can be described as the set

T m+n
T ={ (ql,...,qm,pl,...,pn) e Z |
m
Z q. 9., = p, (mod p”) for i=1, ..., n)
. j ij i
j=1
The L3—algorithm provides a lower bound for the length of the nonzero vectors
in this set, which is of the same size as pu-n/(n+m) , and that of QO

This yields the desired result, if u is taken large enough.

For the inhomogeneous case, put
_ _aw) _p(BNT
= (0,05 g P,

and consider the set

* T m+n
' = { [ql,...,qm,pl,..-,Pn) €z
- "
ﬂi + jzlqj.gij = pi (mod p*) for i=1, ..., n}

* *
Then x €T if and only if x +yeT , so T is a translated lattice. A

lower bound for £(I',y) now yields the desired result.

Again variations are possible, as in the real case, e.g. by replacing on the
(n+i) th row the u by different By It is even possible in this way to

treat more than one prime p at the same time.

We conclude this section with three remarks. Firstly, in the case that the
dimension of the lattice under consideration is only 2, the L3—algorithm is
essentially the continued fraction algorithm, and so yields nothing new. For
the p-adic continued fraction algorithm, see de Weger [19868]. Secondly, the
inhomogeneous case of diophantine approximation of one linear form of real
numbers can also be treated by what is known as Davenport’'s lemma, cf. Baker

and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison
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[19713]). We will return to this in Chapter 3, and explain there why we

prefer our method.

Finally, one of the nice features of the above method of practical
diophantine approximation is that if an extreme solution exists, then in the
homogeneous case the lattice (with proper constant C or p ) will be
distorted. This means that the reduced basis will not be as nice as expected,
for example there might be a basis vector in it that is substantially shorter
than the other ones. In the inhomogeneous case the existence of an extreme
solution means that there is a lattice point extremely near to y . The
algorithm detects such an extraordinary situation at once, and in most cases
the extremal solution is presented explicitly (e.g. in the homogeneous case
as one of the vectors of the reduced basis). One can check whether this
extremal solution actually satisfies the original equation, and then proceed
by replacing in the above reasoning &(I') or {£(I',y) by lower bounds for
all vectors in the lattice except the extremal one. These new lower bounds
will in general be of the expected size. However, when we solved diophantine

equations in practice, we have never met such an extraordinary situation.

1.5. The procedure for reducing upper bounds.

We have seen in Section 1.2 how upper bounds for the solutions of the
exponential inequalities and equations occurring there can be found. In
Section 1.4 we have studied some diophantine approximation theory from a

practical point of view. Now these two things come together.

From the application of the Gelfond-Baker theory we are left with the

following problem. We have a linear form

where the g and ﬂj are constants (that they are logarithms of algebraic
numbers is now of no importance anymore), and the nj are integral unknowns.

We know that A 1is extremely close to 0, namely
IA| < c-exp(-§-N) ,

where ¢, § are (small) constants, and N = max]nj] . Finally, we have an

explicit upper bound N0 for N . This N0 is very large, 1050 say.
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It will be clear from Section 1.4 that the methods outlined there are of use

for solving this problem. For Q0 we take N. . We have n =1 . In the real
case we expect, by choosing C at least of size Ng+1 , that

Il > et N,
for a small constant ¢’ . It follows by combining the two inequalities for
J]A] that

N < log(c/c’')/6 + (m/§)-log NO

So the upper bound N0 for N 1is reduced to an upper bound N1 of the size
of 1log NO , which is a considerable improvement indeed. We now may apply the
procedure with N1 instead of No , and repeat until no further improvement
is obtained. In practice it appears almost always to be the case that in that
situation the reduced upper bound is near to the actual largest solution,
anyway so small that simple methods of finding all the solutions below that

bound suffice.

In the p-adic case an analogous reduction of upper bounds can be reached,

following a similar argument. We have for the linear form A (cf. (1.4)),

<
ordp(A) < cq + ¢y mj ,
where ¢ S are small constants, and mj is one of the wvariables.
Moreover, the variables are bounded by a large constant N0 , that is
explicitly known. We take u such that p# is at least of size N8+l , So

that the lower bound for the shortest nonzero vector in T (or T ) 1is

larger than /m-N0 . Then it follows that the elements of the lattice I (or
*

of the translated lattice T ) cannot be solutions of (1.2). Therefore,

c1 + 02-mj < u,

so that we find a new upper bound for mj , that is of the size of u , which
is about log NO / log p . We repeat this procedure for all the mj , in
order to obtain a reduced upper bound for H_ . If this is not yet sufficient
to derive at once a reduced upper bound E;r H , then we can do so by
applying a reduction step for real linear forms, where we may take advantage
of the fact that for some of the variables a much better upper bound has just
been found (cf. the second variation in Section 1.4). Again we repeat the

whole procedure as far as possible.
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