CHAPTER 2. PRELIMINARIES.

2.1. Algebraic number theory.

In this section we quote results from algebraic number theory that we use
throughout the remaining chapters. We refer to Borevich and Shafarevich

[1966] or other text-books on algebraic number theory for full details.

Let K be a finite algebraic extension of @ , of degree D = [K:Q@] . There
are D embeddings o : K> C . Let a € K be an element of degree d , and
let ag > 0 be the leading coefficient of its minimal polynomial over 7

We define the (logarithmic) height h(a) by

h(a) = %~10g[aOD/d~ﬂmax(l,[a(a)])] ,
a

where the product is taken over all embeddings ¢ . Note that this definition
does not depend on the field K . Hence, if the conjugates of « are
10 o ag s then the above definition applied for K = Q(a) yields

d
h(a) = %-1og[a0' ﬂ max(1,|ai|)j
i=1

In particular, if o € @ , then with a = p/q for p, g€ Z with (p,q) =1
we have h(a) = log max(|p|,|q|) , and if a € Z then h(a) = log|a]

Let there be s real and 2-t non-real embeddings (with D = s + 2.t ).

Then Dirichlet’s Unit Theorem states that there exists a system of r
independent units Egs e €0 where r =s + t — 1 , such that the group
of units of K 1is given by
2 2
{ §-el ey | ¢ a root of unity, a; €Z for 1i=1,...,r }

There are only finitely many roots of unity in K . Any set of independent
units that generate the torsion-free part of the unit group is called a

system of fundamental units.

The number a 1is called an algebraic integer if ay = 1 . Let the norm of an
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element o € K be defined by
d
D/d
NK/®<a) = flota) = (.ﬂ ai] .
o i=1

For algebraic integers, Q(a) € Z . The units are precisely the elements

N
K/
of norm 1 . Two elements a, B of K are called associates if there is a
unit € such that a = ¢ . Let (a) denote the ideal generated by «a
Associated elements generate the same ideal, and distinct generators of an

ideal are associated. There exist only finitely many non-associated algebraic

integers in K with given norm. The ring of algebraic integers is denoted by

OK . Let ays s Op be elements of DK that are @-linearly independent.
Then Z~al X ...0X ZvaD is called an order of K if it is a subring of the
'maximal order’ OK

In K any algebraic integer can be written as a product of irreducible
elements. Here an irreducible element (prime element) is an element that has
no integral divisors but its own associates. However, this decomposition into
primes need not be unique. Ideals can also be decomposed into prime ideals,
and this decomposition is unique. A principal ideal is an ideal generated by
a single element a . Two fractional ideals are called equivalent if their
quotient is principal. It is well known that there are only finitely many
equivalence classes. Their number if called the class number hK . For an
ideal a it is always true that a K is a principal ideal. The norm of the

(integral) ideal a 1is defined by N = #(OK/Q)

k(@
For a prime ideal p there is always a rational prime number p such that
P 1is a divisor of (p) . We say that p Iies above p . The ramification
index ep is the largest power to which P divides (p) . The residue class
degree fp is the integer such that

fp
NK/Q(P) =P

We denote by ordp(a) the exact power to which the prime ideal p divides
the ideal a . For fractional ideals a this number can of course be

negative. For numbers a we write ordp(a) for ordp((a)) . Note that
d = d
or p(a) or p(a)/ep

can be defined for all a € K . We will return to this in Section 2.3, which

deals with p-adic number theory.
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2.2. Some auxiliary lemmas.

In this section we give a few simple auxiliary lemmas. The first one enables
us to find an upper bound in closed form for some real number x > 1 that is

bounded by a polynomial in log x . See Pethé and de Weger [1986]}, Lemma 2.3.

LEMMA 2.1. Let a=>=0, h=z=1, b>0, and let x € R, x > 1 satisfy
Xx < a + b-(log x)h .

If b > (e2/h)h then
x < 2h~[al/h+bl/h~1og(hh-b)]h ,

and if b < (ez/h)h then

X =<

AN AT

Proof. We may assume that x is the largest solution of

x = a + b-(log x)h .

1/h 1/h 1/h .
By (zl+22) < zy + z, we infer
xl/h < al/h + c-log(xl/h) R
where ¢ = h~b1/h . Define y by xl/h = (l+y)-c-log ¢ . From

log ¢ < log(c-log c)
it follows that
ch-(log c)h < b-(log[ch~(log c)hnh ,

which implies x > ch~(log c)h . Hence y > 0 . Now,

(l+y)-c-log c = xl/h < al/h + c-log(l+y) + c-log ¢ + c-loglog ¢

1/h

< a + c'y + c-log ¢ + c-loglog ¢

Hence

1/h

yc-(log c - 1) <a + c-loglog ¢

If ¢ = e2 it follows that
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xl/h = c-log ¢ + y-c-log ¢ < c-log c + ~419§454~~(al/h+c-loglog c)
log ¢ - 1
< 2~(a1/h+c-1og c)
2 2 h h
If ¢ < e , then note that x < a + (e"/h) -(log x) . So we may assume
c = 82 in this case. The result follows. ]
The next lemmas make explicit that x and log(l+x) are near if x| is

small in the real and complex case, respectively.

LEMMA 2.2. lLet ae€lR . If a <1 and |x| < a then

—log(l-a)
a

[Tog(1+x) | < <l

and

x| <
l-e

Proof. Note that log(l+x)/x 1is a strictly positive and strictly decreasing
function for |x| < 1 . Hence it is for |[x| < a always less than its value

. . X
at x = —a . The same is true for the function x/(e"-1) . 0

LEMMA 2.3. Let 0 <a=<n . If |x| <a then

a i-x
x| Tsinca/2y 1 1
i-x
If a < 2, |e -1 < a and |x| < m then
1x] < 2~arc51n(a/2)'lel~x_ll
a
i-x L1 L1 .
Proof. Note that |e -1 = 2~|51n(5-x)| . and that 2-51n(z-x)/x is a

positive and even function, that decreases on 0 =< x < a . Hence it takes its
minimal value at x = a . The first inequality now follows. The second one
can be proved in a similar way. )

2.3. p-adic numbers and functions.

In this section we mention the facts about p-adic numbers and functions that

we use. For details we refer to Bachman [1964] and Koblitz [1977], [1980].
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We assume that the reader is familiar with the field of p-adic numbers ®p
and the p-adic valuation ordp . Note that the ordinary ordp as defined in
@p coincides with the definition given in Section 2.1. We denote by I the
completion of the algebraic closure of ®p , i.e. the field to which all

p-adic theory is applied.

Every nonzero number o € @p has a p-adic expansion

where k = ordp(a) and the p-adic digits u; are in {0, 1, ..., p-1 1} ,
with u 0 . The number O can be represented in this way by taking k =0
and all digits equal to O , and ordp(O) = «© by definition. If ordp(a) >0
then o 1is called a p-adic integer. The set of p-adic integers is denoted by
Zp . A p-adic unit is an o € @p with ordp(a) = 0 . For any p-adic integer

1
u ~pl
o 1

a and any p € N there exists a unique rational integer

=
0 a(ﬂ) - .z

i
satisfying

(») )

< a < plJ -1

ord (a-o )y =z p o,
p(

For ordp(a) > k we also write a = 0 (mod pk) . The p-adic norm is defined
by
-ord (a)

p

al =
Ilpp

In Section 2.1 we have seen how to define ordp and ordp on algebraic
extensions of @ . For any a € Op with ordp(a) > 1/(p-1) we can define

the p-adic logarithm logp(l+a) by the Taylor series
2 3
logp(1+a) =a-~a /2 +a /3 -

This logarithmic function has the well known properties, such as
logp(§1~§2) = 1ogp(§1) + 1ogp(§2) for all 51, 52 for which it is defined.
Further, logp(g) = 0 if and only if € 1is a root of unity. In @p the
only roots of unity are the (p-1) th roots of unity (if p 1s odd). Using
these properties, this logarithmic function can be extended to all & € ﬂp
with ordp(g) = 0 , as follows. Let k € N such that ordp(gk—l) > 1/(p-1)
Then
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1 k
1ogp(€) = E-logp[1+(§ -1} .

An equivalent definition is 1ogp(§) = logp(f/g) , where ¢ is a root of
unity such that ordp(f—g) > 0 . In this way the p-adic logarithm is a well
defined function. Note that logp(g) lies in the subfield of Qp generated
by £ . Finally we note that if ordp(f) > 1/(p-1) then

ord (¢) = ord (log (1+£))

2.4. Lower bounds for linear forms in logarithms.

In this section we quote in detail the results from the Gelfond-Baker theory
that we use. They yield lower bounds for linear forms in logarithms of
algebraic numbers. We do not always give the theorems in their full
generality, since in this thesis only linear forms with rational unknowns
occur, whereas most Gelfond-Baker theorems are formulated for linear forms
with algebraic unknowns. We selected results that give completely explicit
constants. The first result in this field for a linear form in logarithms
with at least three terms is due to Baker [1966], and in the p-adic case to
Coates [1969], [1970]. For a survey of this theory, see Baker [1977] and van
der Poorten {1977]. We will use more recent, sharper results, due to
Waldschmidt [1980] and Yu [19873]. Further improvements of the constants have

been reached, but too recently to be taken into account in this thesis.

First we deal with real/complex linear forms in logarithms. We quote the

result of Waldschmidt [1980].

LEMMA 2.4 (Waldschmidt). Let K be a number field with [K:Q} = D . Let
aps e @ € K , and bl’ e, bn eZ (n=2) . Let Vl’ e, Vn be
positive real numbers satisfying 1/D < V1 < ... =< Vn and

Vj > max [ h(aj), |log aj|/D ] for j =1, ..., n.
where log aj for j =1, ..., n 1is an arbitrary but fixed determination of

the logarithm of aj . Let V; = max(Vj,l) for j =n, n-1 , and put

n
A= z b.-log a,
j=1 J J
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Put B = max lbil . If A= 0 then

1<i<n
e(n) 2-n n+2 +
|A] > exp [ -2 ‘n D ~V1~...-Vn-log(e-D-Vn_1)~
-( log B + 10g(e-D-V+) ) )
a ,

where e(n) = min [ 8-n + 51, 10-n + 33, 9-n + 39 ) . If, moreover, it is
known that [@(/al,ii‘,/ar):@] =" , then we can take e(n) = 9.n + 26 and

. ! n+4

replace the factor n? " in the above bound for Al by n

Waldschmidt’s main theorem does not give the constant e(n) as detailed as
we do, but he does so in his proof, cf. p. 283. We remark that improvements
of the above bounds have recently been found by Blass, Glass, Meronk and
Steiner [1987C], [1987d], Loxton, Mignotte, van der Poorten and Waldschmidt
[1987], and Philippon and Waldschmidt [1987]. For the case n = 2 , a sharp
bound has been given by Mignotte and Waldschmidt [1978].

In the p-adic case we quote two results: one due to Schinzel [1967] (Theorem
1) for the case of a linear form in logarithms with two terms, and another
for the general case, due to Yu [1987a] (Theorem 1, see also Yu [1987b]). We
note that Yu's bounds improve much upon the results of van der Poorten

[1977]. Moreover, van der Poorten’'s proofs seem to contain some errors. We

give Schinzel’s result for quadratic fields only.

LEMMA 2.5 (Schinzel). Let p be prime. Let A be a squarefree integer, and

let D be the discriminant of K = Q(YA) . Let £ = €"/¢é' and x = x"/x’

be eiements of K , where &', &", x', x" are algebraic integers. Put

1/4
L= log max (Je-d| % et el Jem ol femr] )

where |v| denores the maximal absolute value of the conjugates of v € K

Let P be a prime ideal of K with norm Np = pp . Put ¢y = 2/p-log p ,

¢ = ordp(p) . If ¢ or x is a y-adic unit and £n # xm , then

-2 4 4-p+b
p P

ordp(ﬁn—xm) < 106-¢7~@ -L ~[10g max(|m|,|n|)+(p-L-pp+2/L]3

LEMMA 2.6 (Yu). Let aps s o (n=2) be nonzero algebraic numbers.
Put L = @(al,...,an) , d=[L:Q] . Let bl’ e, bn be rational integers.
Let p be a prime ideal of L , lying above the rational prime p . Let ep
be the ramification index, and fp the residue class degree of p . Write
L for the completion of L with respect to ordp . (Note that for all
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B € Lp we have ordp(ﬂ) = ep-ordp(ﬂ) .) Let q be a rational prime such

that
fp
q/l p-(p "-1)
Let
vj > max | ha,), f?-(log p)/d) for j =1, ..., n,
7 + —
such that ‘1 < ... = Vn—l s Vn-l = max(l,Vn_l) R
B, > min |b.{ , B_=1]b |, B> max |b,]| ,
1<j<n,b, 0 J n n l<j<n-1
B > max ( LT P L N ).
3
W = max ( log(1l+,~_-B, log B, fp-(log p)/d )
Suppose that ordp(aj) =0 for j =1, ..., n, that
[Leag/%, . et/ iL) = q" (2.1)
n
by b
that ord (b_) < ord (b,) for j=1, ..., n, and a, +... -« N~ 1 . Then
P n P ] 1 n
b b
1 n n n+5/2 2-n 2
ordp(al e -1) < ¢ (p,n)-a  n -q” - (q-1)-log (n-q)-
fp 1.0 ~(n+2)
(p “1)'[2+511) -(fp~(10g p)/d) VeV
-(—E_+1og<a.d)]-(1og(4~d.v+ )+f_-(log p)/8-n)
6-n n-1 P ’
where

a; = 56-e/15 if n=<7 , a; = 8-¢/3 if n=218 ,
and Cl(p,n) is given by the following table, with for p =5

1.2
C)(p.m) = Gf (p,m) (24=p)

n 2 3 4 5 6 7 > 8

Cl(2,n) 768523 476217 373024 318871 284931 261379 2770008
01(3,n) 167881 104028 81486 69657 62243 57098 116055
Ci(p,n) 87055 53944 42255 36121 32276 24584 311077
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Remark. Yu [19873] announces that the ‘indeperidence condition’ (2.1) can be

removed. This may be at the cost of somewhat larger constants.

2.5. Numerical methods.

In solving diophantine equations using computational methods from diophantine
approximation theory, as we will do in Chapters 4 to 8, it is necessary to
have logarithms (real, complex or p-adic) of algebraic numbers available to a
large enough precision (maybe several hundreds of digits). We will not go
deeply into the problems of computing such approximations, but make only a

few remarks on it in this section.

To start with, the precision with which most computers (mainframes as well as
personal computers) work, is insufficient for our purposes. Usually at most
double precision (52 bits, equivalent to 15 decimal digits), or at best
quadruple precision (112 bits, equivalent to 33 decimal digits) is standard
available. This is not sufficient for our purposes, not only because we may
require larger precision, but also because we want to have the rounding off
errors under control, to be sure that no solution of a diophantine equation

is missed by unexpected consequences of rounding off errors.

Packages for computations with arbitrary precision are available and very
useful, e.g. the MP package of R.P. Brent (cf. Brent [1978]). It is not
difficult to write one’s own package for simple manipulations on
multi-precision numbers, such as addition, multiplication and division (cf.
Knuth [1981] for efficient algorithms). No such packages are available for
manipulations on p-adic numbers, but the programs are similar to those for

real numbers.

Computing roots of polynomials with integral coefficients can be done by
Newton's method, both in the real and the p-adic case. One should make sure
that the result obtained is correct to the desired precision, preferably not
(only) by substituting the found approximation of the root into the
polynomial and checking that the result is O within the desired precision,

but (also) by theoretical error estimates for the Newton method.

Computing logarithms can be done by the Newton method too. However, we did it

by using the Taylor series
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log(l+x) = x — x2/2 + x3/3 - ..,

or by the more rapidly converging series

1+x 3 5
1ogI:; = 2~( X +x /3 +x7/5+ ... ]
For |x| very small this method works fast, whereas for larger |x| the

following idea works well. Compute approximations to the desired precision of
log 1.1, log 1.0001, log 1.00000001 , say, and store them. Now compute

€ [1,1.1) and kl € NO such that

which is a matter of a few divisions of a multi-precision number with a
rational number with small numerator and denominator (11 and 10) only, that

can be done fast. Next, compute X, € [1,1.0001) and k2 € NO such that

)

X, = x2-1.0001 s

1

and Xy € [1,1.00000001) and k3 € WO such that

ks
x, = %,1.00000001

Then compute log Xy by the Taylor series, which converges very fast, and

compute log x by

log x = log x, + k3~log 1.00000001 + k,-log 1.0001 + kl-log 1.1

3 2

When computing all this, one should take care of having the rounding off
errors at each addition/multiplication under control. This can e.g. be done
by doing all computations twice, rounding off in different directions at each
step, such that finally a small interval is found in which the exact number

lies (with mathematical certainty).

Computation of arctan x is done by the Taylor series
3 5
arctan x = x - X /3 + x° /5 -

The number =« = 3.14159... can be computed rapidly by this series for the

arctan function, by the identity

m = l6-arctan 1/5 - 4.arctan 1/239
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Doing p-adic arithmetic has the advantage above real arithmetic that rounding
off errors do not tend to become larger, as long as one is not dividing by a
number with large p-adic order. If ordp(x) > 0 then 10gp(1+x) can be

computed by the Taylor series
2 3
1ogp(1+x) =X - X /2 +x/3+ ...,
and also it may be useful to compute
3 5
log —— = 2-( x + x7/3 + x7/5 + ... )

If x = 0 (mod p) and x = 1 (mod p) then logp X can be computed, since

there exists a k € N such that xk =1 (mod p) , and then
1 k
lo X = =-lo I+(x -1
g g log,( ))

and the above given Taylor series can be used to compute logp x . Note that
in computing the above mentioned Taylor series there will be factors p in
the denominators of the terms. Hence, to find the first u p-adic digits of
1ogp(1+x) , it is not enough to compute only the first y/ordp(x) terms of
the Taylor series, but the first k terms must be taken into account, where

k is the smallest integer satisfying
k-ordp(x) - log k/log p = p .

For rapid convergence of Taylor series it is desirable to apply them only for

numbers X with large p-adic order. For example,
1og3 4 =3 - 32/2 + 33/3 -

converges not as fast as

1 1 2 2 4 3.6
logy 4 — 3-log, 64 - 5»[ 737 - 77372 477373 - 00 ),
or as
B 143/5 3.3 5,0 .5
log, 4 = log, 1-375 = 2-(3/5+37/3:5" +37/5-5" + ... ),
or as
2
log, 4 = %~log3 liZ;éiléé - %'( 7-32/65 + 73-36/3~653
1-7-3°/65
+ 773105657 4 e )
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The above considerations are sufficient for doing exact computations with the
L3—algorithm, as we present it in Section 3.5. We also use the simple
continued fraction algorithm in some instances. This we do as follows.
Suppose we want to compute the continued fraction expansion of a real number

9 , that we have approximated by rational numbers 01, 62 such that

61 <H <Y, <9, + €

2 1
for some small ¢ . We can compute the continued fraction expansions of ﬂl
and 62 exactly. As far as they coincide, they coincide also with the
continued fraction expansion of ¢ . If the continued fraction expansion of

9 1is needed so far that the k th convergent with denominator . > XO
be known exactly, for a given (large) constant XO , then ¢ should be at
least as small as XO’

Almost all computer calculations done for the research of this thesis were
performed on an IBM 3083 computer at the Centraal Rekeninstituut of the
University of Leiden, using the Fortran-77 language. Also some computations
were done at a VAX 11/750 computer at the Rekencentrum of the University of

Twente.
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