CHAPTER 4. S-INTEGRAL ELEMENTS OF BINARY RECURRENCE SEQUENCES.
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4.1. Introduction.

In this chapter we present a reduction algorithm for the following problem.
[eel

Let A, B, GO‘ G1 be integers, and let the recurrence sequence {Gn)n_o be
defined by
G = A-G_ - B-G for n=1, 2,
n+l n n-1
Assume that A = A2 —~ 4-B 1is not a square. Let w be a nonzero integer, and
let Pys -+ Py be distinct prime numbers. We study the diophantine
equation
s mg
G =w- H P. 4.1
n . i
i=1
in nonnegative integers n, My, .., Mmoo We will study both the cases of
positive and negative discriminant A (the 'hyperbolic’ and ‘elliptic’

cases). It was shown by Mahler [1934}] that (4.1) has only finitely many
solutions. For the case A > O Schinzel [1967] has given an effectively

computable upper bound for the solutions.

Mignotte [1984a], [l984b} indicated how in some instances (4.1) with s =1
can be solved by congruence techniques. It is however not clear that his
method will work for any equation (4.1) with s = 1 . Moreover, his method
seems not to be generalizable for s > 1 . Pethé [1985] has given a reduction
algorithm, based on the Gelfond-Baker method, to treat (4.1) in the case

A>0, w=3s5=1

Our reduction algorithms are based on a simple case of p-adic diophantine

approximation, namely the zero-dimensional case, cf. Section 3.9. In the

74



hyperbolic case this suffices to be able to find all solutions of (4.1). This
is based on a trivial observation of the exponential growth of |Gn| in this
case. In the elliptic case the situation is essentially more complicated.
Then information on the growth of lGnI can be obtained from the complex
Gelfond-Baker theory. Therefore in this case we have to combine the p-adic
arguments with the one-dimensional homogeneous or inhomogeneous real

diophantine approximation method, cf. Sections 3.2 and 3.3.

We shall give explicit upper bounds for the solutions of (4.1) which are
small enough to admit the practical application of the reduction algorithms,
if the parameters of the equation are not too large. Pethd [1985] pointed out

that essentially better upper bounds hold for all but possibly one solutions.
The generalized Ramanujan-Nagell equation
s .
W= [lpt, (4.2)

Zys e z € Wo are the unknowns, can be

reduced to a finite number of equations of type (4.1) with A > 0 . Equation
(4.2) with s =1 has a long history (cf. Hasse [1966], Beukers [1981] for a

where k € Z 1is fixed, and X,

survey), and interesting applications 1in coding theory (cf. Bremner,
Calderbank, Hanlon, Morton and Wolfskill [1983], MacWilliams and Sloane
[1977}, and Tzanakis and Wolfskill [1986], [1987]). Examples of (4.2) have
been solved using the Gelfond-Baker theory by Hunt and van der Poorten
(unpublished). They used real or complex, not p-adic 1linear forms in
logarithms. As far as we know, none of the proposed methods to treat (4.2)
gives rise to an algorithm which works for arbitrary values of k and the

pi's , whereas Tzanakis’ elementary method (cf. Tzanakis [1983]) seems to be

the only one that can be generalized to s > 1 . Our method has both
properties.
This chapter 1is organized as follows. In Section 4.2 we give some

preliminaries on binary recurrence sequences. In Section 4.3 we study the
growth of ]Gn| , both in the hyperbolic and the elliptic case. The
hyperbolic case is trivial, and in the elliptic case we give a method for
solving |Gn| < v for a fixed v € N , by proving an upper bound for n
that has particularly good dependence on v , and by showing how to reduce
such an upper bound. Section 4.4 gives upper bounds for the solutions of

(4.1). Section 4.5 treats a special case: that of ’'symmetric’ recurrences.
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For this special type of recurrence sequences our reduction algorithms fail,

but elementary arguments will always work for solving (4.1) in these cases.

Section 4.6 gives a lemma on which the p-adic part of the reduction procedure
is based, and some trivial cases are excluded. In Section 4.7 we give the
algorithm for reducing upper bounds for the solutions of (4.1) in the case A
> 0 , with some elaborated examples. The same is done for the case A < 0 in
Section 4.8. Section 4.9 shows how to treat the generalized Ramanujan-Nagell
equation (4.2), as an application of the hyperbolic case of (4.1). As an
example we determine all integers x such that x2 + 7 has no prime factors
larger than 20, thus extending the result of Nagell [1948] on the equation
x2 + 7 = 2" (the original Ramanujan-Nagell equation). Finally in Section
4.10 we give an application of the elliptic case of (4.1) to a certain type

of mixed quadratic-exponential diophantine equation, analogous to the

application of the hyperbolic case to solving (4.2). As an example, we

determine the solutions X, m, my, n of
m, m m=m

2 -3t72x+2 00792 110"

4.2. Binary recurrence sequences.
. . o s

Let A, B, GO, G1 be given integers. Let the sequence (Gn)n=0 be defined
by

Gn+1 = A'Gn - B-Gn_l for n=1, 2, ... . (4.3)
Let a, B be the roots of x2 - Ax + B =0 . We assume that A = A2 - 4B

is not a square, and that «/8 1is not a root of unity (i.e. the sequence is

not degenerate). Put
A s ————0—, = (4.4)

Then X and p are conjugates in K = Q@(/A) . It is well known that for all

n=>0

Gn = A-an + u~ﬂn , (4.5)

(cf. Shorey and Tijdeman {1986], Theorem C.1). Since our aim is to solve

(4.1), we see from (4.3) that we may assume without loss of generality that
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(Gy.61) = (6),B) = (A,B) = 1

Namely, if p | (Gl,B) then p | (GI’GZ) , and 1if P | (A,B) then

P | (G2,G3) , and if p | (GnO’Gn0+1) then p | Gn for all n > no , so the
common factor p can be divided out in equation (4.1).
LEMMA 4.1. Let n, My, o, M be a solution of (4.1). Then, with the above
assumptions, we have for 1 =1, ..., s either m, = 0 or n=0 or
ord (a) = ord (B) =0 ,
Py Py (4.6)
1
ord (X)) =ord_ (p) = - =-ord (A) <O
Py Py 2 Py

Proof. Suppose P | B Then P; ! A , hence, from (4.3) and (B,Gl) =1,
Py I Grl for all n = 0 . Thus, m; = 0 or n =0 . Next suppose Py I B

Then, by a-8 =B ,

ordp'(a) + ordp.(ﬁ) = ordp.(B) =0

i i i
Now, a and B are algebraic integers, so their pi—adic orders are
nonnegative. It follows that they are zero. Put E = -X-p-A . Note that

Ee€eZ , and for all n=>=0

62 - AG G +BG=EB".
n+l n n+l n
Suppose that Py | E , then we infer that Py I Gn for all n , since

(GO,Gl) =1 . Hence m, = 0 . Next suppose 0 } E , then

ordpi(A-/A) + ordpi(u-/A) = ordpi(E) =0

Since X-YA and pu-/A are algebraic integers, the result follows. u]

From Lemma 2.1 it follows that we may assume without loss of generality that
(4.6) holds for i =1, ..., s . Of course, we may also assume that

ordp (w) =0 for i=1, ..., s . The special case s = 0 in equation (4.1)
i
is trivial if A > 0 , and will be treated in the next section for all A .
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4.3. The growth of the recurrence sequence.

First we treat the hyperbolic case A > 0 . Note that |a| = {8] , since the
sequence is not degenerate. So we may assume e} > |B| . We have the
following, almost trivial, result on the exponentiality of the growth of the

<«
sequence (Gn)n=0 . Let

[ a
n, > max (2, 1og|A|/log|ﬂ| ],

Note that vy > 0

LEMMA 4.2. Let A >0 . If n=>n, then |G| > v la|”

Proof. By (4.5), |af > |B] and ng > 0 it follows for n = ng that

-1 -n a. —-n
16 1-Jal ™ =[x (3) 701 2 2] - DRI o

We apply this to (4.1) as follows.

COROLIARY 4.3. Let A > 0 . Any solution n, My, .., W of (4.1) with

n = n satisfies

1 .
n< Yom 2P logl/lwl)
. i logja| log|a|
i=1
Proof. Clear, from Lemma 4.2 and (4.1). jm}

Next we study the elliptic case A < 0 . Since a/f 1is not a root of unity,

B> 2 . Since (a,8) and (X,u) are pairs of complex conjugates, |a| = |B]
and [A] = |g| . Let v eR , v =1 be given. We study the diophantine
inequality

|Gn[ <v . 4.7)

We apply a result of Waldschmidt (see Section 2.3) from the complex theory of
linear forms in logarithms, which gives an upper bound for =n  that is

particularly good in v . See also Kiss {1979]. Let
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E=-X-p-A,

1 1

U2 = 5 -max (n, log B ) , U3 = ;~max (m, log E ) ,

+ . +
U2 = min ( U2, U3 ), U3 = max ( U2, U3 )

C, =3 362x1021~U ‘U, -log(2- -U+) C, = log(4- -U+)

1 2 73 0BT ) by = R0BRA e,

Cy = { log(n/2-|nl) + C,-C, + C,-log(4-C,/log B) ) -4/log B .

THEGREM 4.4, Let v ek , v=2=1. All solutions n =0 of (4.7) satisfy

4
n < C3 + ng—ﬁ-log max [ v, 2~[G0~p~/A| ) .

Remark. Note that C, does not depend on v .

b

The following corollary of Theorem 4.4 is immediate.

COROLIARY 4.5. Let A < 0 . Any solution n, My, .o, MW of (4.1) satisfies
4 S

n < C3 + Igg—g-max ( 1og(2»|GO~u-/A|), log|w| + iglmi-log P ) .

Proof (of Theorem 4.4). Note that |a] = || = VB = y2 . We have from (4.7)
-] ()" v _-n/2
— =1 -1 < —-B . 4.8

GV - = @)

We may assume n 2= 2 . Let -A/u = e2"1'¢ , a/f = eZWl.w , with - % <Y < %
1 1 . 1

and - PR AT Let ko, kl € Z be such that | j-¥ + n-¢ + kj | = 3
Then k| <1+ %-n <n for j =0, 1. Put

A, = 2ni-[ jyp +ne + k., ] = j-Log[zg] + n<Log[E] + 2-k,-Log(-1)

J ] I B J
for j =0, 1 . By Lemma 2.3 and (4.8) we have an upper bound for |A1|

L 2ni-(¢+n~¢+k1)
|A1| =2n-| ¥ + np + k1 | = ;ﬁ'le -1]
n
- 1,,.‘ [—_AJ[E] -1 ‘ <1, v gn/2
2 ul B 2 |pl

It may happen that A, = . In that case, Y + n¢g € Z , hence

1
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-(A/u)-(a/B)™ =1 , and it follows that c = Ao+ pp = 0 . Kiss [1979]
showed that this implies [Rn] < 2~|G0| , where Rn = (an—ﬂn)/(a—ﬂ) . From
this, Kiss derived an upper bound for n . We shall follow his argument, but
we apply another, sharper result from the Gelfond-Baker theory than Kiss did.

Note that, by |8| = /B ,

Bn/2 o ? Bn/2 2 Bn/2
21601 = 1801 = | (3] 2| = Jrapteenng) - 25 ing
Now A0 # 0 , since by n = 2 the contrary would imply ¢ € @ , which is

impossible, since /B 1is not a root of unity. Thus, take j=1 if Al = 0

and j = 0 otherwise. Then Aj = 0 , and

n -n/2
A, | € 5—— max v, 2-|G.-u-Y|A ‘B . 4.9
1851 = 7 ( 1Gy 1141 ) (4.9)
From Lemma 2.4 we can derive a lower bound for IAjl . Note that
max(j,n,2|kj|) = 2-n, so that W = log(2-n) . We choose V1 = % . The number

z = a/f satisfies
B-z2 - (AZ—Z-B)~Z + B =20,

hence h(e/B8) < %-1og B . And z = -X/p satisfies
E-z2 - (2-E+A-Gg)~z +E=0,

hence h(-)/u) =< %'1og E . Thus V2 = U2 , VvV, = U’ satisfy the requirements

for Lemma 2.4. We find
|a;] > exp (=€, ( log(2:n) + log(2~e~U;) ) )
j (4.10)
= exp [ —Cl~( log n + 02 ) ]

Combining (4.9) and (4.10) we find n < a + b-log n , where

2 n
a = TEE_E'[log max ( v, 2~|G0-p-/A| ] + logﬁTT;T + Cl-C2 J s

b

2~Cl/log B
The result now follows from Lemma 2.1, since

21'max(w,log B)

b = 2:C;/log B = 1.681x10 Tog B

-max(n,log E)-log(2~e~U;)

which is certainly larger than e2 . u|

We now want to reduce the bound found in Theorem 4.3. We do this by studying
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the diophantine inequality

| wj + e+ kj | < vO-B'“/2 , (4.11)
which follows from (4.9), where vy = max ( v, 2-|Go-p-/A| )/&~[u| , and
¢j = j-¥ . We have to distinguish between the homogeneous case . = 0 and
the inhomogeneous case wj » 0 . We apply the methods that have been

described in Sections 3.2 and 3.3 respectively. Unlike in other chapters,

here we give the results in the form of precisely defined algorithms.

First we study the homogeneous case ¢j = 0 . We have the following
algorithm. Let N be an upper bound for the solutions of (4.11), for example

the bound found in Theorem 4.3.

ALGORITHM H. (reduces given upper bound for (4.11) in the case ¢j =0).

Input: ¢, B, [u], VO’ N .

*
OQutput: new, reduced bound N for n .
n,/2
(i) (initialization) Choose 0, > 2/log B such that B /nO > 2-v
NO := N ; compute the continued fraction

0 ;

lel = 1 0, ap, 8y, -, a£0+1, o]

and the denominators 99 of the convergents of |g| , with

i =0 ;

LO so large that qLO <N

<q ;
0 LO+1
(ii) (compute new bound) Ai ;= max(a ceeady +1) ; compute the largest

integer Ni+1 such that

Ni+1/2
B /Ni+l < vo-(Ai+2) s

and Li+1 such that 9 < Ni+1 < 9
i+l i+l
(iii) (terminate loop)
if n, = Ni+ < Ni then i :=1i + 1 , goto (ii) ;

0 1

*
else N = max(nO,Ni+1) , stop .

LEMMA 4.6. Algorithm H terminates. Inequality (4.11) with ¢j = 0 has no

*
solutions with N < n <N .

Proof. Termination is obvious, since all Ni are integers. Note that

Bx/z/x is an increasing function for x = 2/log B . Hence, if n > ng
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| lel = legl/n 1< w8 o/m < 1/20°

It follows (cf. (3.6)) that |kj|/n is a convergent of le] , say
]kj|/n = pm/qm . Then q, <n , and (cf. (3.5)),

2
| 1ol = p/a, | > /G, +2)-a; -

Suppose n < Ni for some 1 >0 . Then m < Li . Hence,

n/?2 -2 -1

B’ "/n =< M 1 et - ]kj!/n | < vO-(am+l+2) < VO~(Am+2)
It follows that if Ni+l z n, then n < Ni+1 . m|
Next we study the inhomogeneous case wj = 0 . Again, let N be an upper

bound for n satisfying (4.11)

ALGORITHM 1. (reduces upper bound for (4.11) in the case wj = 0 ).
Input: o, wj, B, vy N .
*
Qutput: new, reduced upper bound N for all but a finite number of

explicitly given n .

(i) (initialization) N0 := [N] ; compute the continued fraction
lef = [0, a;, ay, -y 3y, o0 ]
0
and the convergents pi/qi for i=1, ..., LO , with LO so large

that q; > A~NO and ”qL -¢j” > 2-NO/qL . (If such LO cannot be
0 0 0

found within reasonable time, take LO so large that qL > 4-N0 )

i =0
(ii) (compute new bound)

if “ql),]l)_]” > 2'Ni/qL'
1 1

2
then Ni+l i= [2~log(qLi-VO/Ni)/log B} ;
else compute KeZ with | K - q -wj | =< % ; compute n, € z
i
0 =< n, < 9 with K = ng'Py = 0 (mod qL') ;
i i i
if n = n, is a solution of (4.11), then print an
appropriate message;
Ni+1 1= [2'1og(4‘qci'v0)/log B} ;
(iii) (terminate loop)
if Ny <N
then i :=1i + 1 ; compute the minimal Li < Li+1 such that
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q(’i > 4~Ni and HqLi~¢j” > 2-Ni/qLi (if such Li does not
exist, choose the minimal Li such that q, > A-Ni )3
i

goto (ii) ;
*
else N := Ni ; stop .

LEMMA 4.7. Algorithm 1 terminates. Inequality (4.11) with ¢j = 0 has for

*
N < n < N only the finitely many solutions found by the algorithm.

Proof. It is clear that the algorithm terminates. Suppose that n =< Ni for

some i = 0 . then if HqL ~¢j” > 2~Ni/qL , we have
i i

”qt,'¢j“ ”qL_'(¢j+n-¢+kj) ~ngeq |
1 i i

-n/2
< q£i~|¢j+n-¢+kj] + n/qLi < qLi~VO-B + Ni/qﬂi

IA

It follows that n <N, , . If ”qﬁi'¢j“ 2.Ni/q{;-l , then

[Kin-py +ko-qp | = [Koqp ¥y + ap - [¥yneerky ] + nefpy —qp -9
1 1 i 1 1 1

-n/2 3
+ q -VO~B / + Ni/qt < " + q ~VO-B
i i i

-n/2

=<

SRS

-n/2 _ 1 _ . e .
If qL"VO'B < T then K + n~p£i + kj‘qfi = 0 , since it is an integer.

By (pLi,qti) =1 it follows that n = n, (mod qLi) . Since qLi > Ni , the

i1sq s . _ . -n/2 1
only possibility is n = Ny - if q£i VO'B > "
immediately. O

, then n < N, follows
i+l

We remark that in practice one almost always finds an Ci such that

Hqc.-¢j” > Z.Ni/qi, , if N, is large enough.
i i

4.4, Upper bounds.

In this section we will derive explicit upper bounds for the solutions of
(4.1), both in the hyperbolic and elliptic cases. Our first step is the
application of the p-adic theory of linear forms in logarithms, which works
the same way in both cases. We use it to find a bound for m., in terms of

log n . Then we combine this with the results of Section 4.3 on the growth of
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the recurrence sequence, which for the solutions of (4.1) yield a bound for

n in terms of the m, (Corollaries 4.3 and 4.5).

Assume that n, > 2 . Let D be the discriminant of Q(/A) . Put
1/4
L = log max ( |e-D| » lax/Al, Ja-u-/Al, [B-X-YBl, [B-p-Yb) )

Let d be the squarefree part of A . For i=1, ..., s put

., =2 if p., | 4, ¢; = 1 otherwise,

: _ : d N _
p; =2 if p, =2, d=15 (mod 8) or if pi>2,[g)——l,
Py = 1 otherwise,
P
6 9 7 3 4 4~pi+4 ¢i~L-pi + 2/L 53
C =10"- . ‘L -p 1+
4,1 pi~log P i i log 0,

LEMMA 4.8. The solutions of (4.1) with n = n, satisfy

3 .
my < C4’1~(log n) for i =1, ..., s

Proof. Rewrite (4.1), using (4.5), as

Pk —i w ,-n = i
B - B et

Then, by (4.6),

w o-n > ™ Ak -L
m, < m, - ordp_(x) = Ordpi[i'ﬂ . Elpi } - ordpi[Lé] _(_XJ]

i i
Apply Lemma 2.5 (Schinzel’s result) with " = a, &' = B, x" = u-/A,
x' = -A-/A . Then we find, using ord_ () = ¢.-ord_ () ,
:pi 1 pi
7 4op.+4 P
6 2 -3 _4 i i 3
m; < 10 [ﬁl_fc;g——p_j ey Loepy ( log n + e Lep 2/L )7,
from which the result follows, since n = ng . =}

Put

C, = max(C

4 4 i) , m = max(mi) , P =

i ’ i i

I —wn
el
H

1
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In the case A > 0 , let 0 > max ( 2, log|A/u|/logla/B] ) , and put

(9]
I

log P / ( logla| + min(0,log(y/|w()) ) ,

a
I

max ( 8-C,-(log 27~c4-cs)3, 8s1-c, } .

In the case A < 0 , put

a
I

4
2 max { C3 + Tog B-log[Z-]GO-y-/AI),

3 10gB logB g 10gB ’

3 .
C8,i = Ca‘i~(log C7) for i=1, ..., s

Then we have the following result, giving explicit upper bounds for the

solutions of (4.1).

THEOREM 4.9. Let n, Mys ey M be a solution of (4.1).
(i). If A >0 and n = 1 then n < C5~C6 and m < C6
(ii). If A< 0 then n< C7 and m; < C8 i for 1 =1, ..., s

Proof. (i). Corollary 4.3 yields n < C5-m . By Lemma 4.8 we now have

3 3
m < Ca~(log n)~ < CA»(log Cs-m)

1f CA~C5 > (e2/3)3 , we apply Lemma 2.1 with a =0, b = C4~CS, h =3, and
. 3 2 3
we find m < 8-C4~(1og 27-C4-C5) . If C4~CS < (e"/3)” , then

n < C5~m < CthS-(log n)3 < (e2/3)3-(1og n)3 R

from which we deduce n < 12564 . Now, m < Ca-(log n)3 < 841404

(ii). From Lemma 4.8 and Corollary 4.5 we see that

4
n < C3 + Tog B-log[2-|GO~u-/A|] ,
or
4-C,-log P
4-log|w| 4 3
n < C3 + Tog B Tog B (log n)

The result now follows from Lemma 2.1, since 4-04-10g P/log B > (e2/3)3 .o
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4.5. Symmetric recurrences: an elementary method.

Before we give our reduction method for the upper bounds following from
Theorem 4.9, we treat in this section separately the cases of ’‘symmetric’
recurrences, for which the reduction methods fail. The reduction methods make
use of the zero-dimensional p-adic diophantine approximation, as explained in

Section 3.9, applied to the p-adic linear form
log [i) + n-log [2)
P pp
for p = Pys --es Pg o This means that we must study the p-adic number
o = - log () / log (3)
P 4 PA

It may however happen that this number ¥ is zero, or that all digits in the
p-adic expansion of ¢ are zero from a certain point on. Then obviously the
reduction process of Section 3.9 breaks down, since it 1is based on the
assumption that the p-adic expansion of 9 contains sufficiently many

non-zero digits.

Define the following special ’'symmetric recurrences’. For a, B8 as defined

in Section 4.2, let

for d =-1 (d is the squarefree part of A ) also

(1+/¢1 )"+ (1F/¢-1) )",

[}
|
i

and for d = -3 also (with w=p or p» for p = %~(1+/(-3)> )

U@ =(1l+e Yool 4+ (1 + w80,
Vn(w) =wa +wB n’
for all n € Z . Note that
- — —
Tn-Tn = 2-S2r1 A Un(w)~Un(w)~Rn = 3-R3n s Vn(w)-Vn(w)-Sn = S3n .

We have the following lemma. We assume that ordp(ﬁ) >0
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LEMMA 4.10. If O has only finitely many nonzero p-adic digits, then there

exist an r € N and a k € Q@ such that G = xR , or G = k'S , or
0 n n n n-r

+ .
(if d = -1) Gn = n-Tn , or (if d = -3 ) Gn = n-Un(w) or n-Vn(w) ,

where w = p or p . Further, r =0 if A <O

Proof. By ordp(ﬁ) > 0 we have 9 = r for some r € N . From the

definition of 9 we infer
r
-X
SRR
gp[ﬂ 7
hence n = (ﬂ/a)r~(p/A) is a root of unity. It follows that we can write

6 =xa" (" 4B

n-r
n )

First let B = %1 . Then A > 0 and

Gy = Ao (@) = ta (of 2]

Gl — .ot [ al—r + ﬂl—r ) _ ar_( ar—l + ﬁr—l:
Note that

(" P g7 QT g )= (2, a+B) =1 or 2,

( ar—l _ ﬁr—l’ of - ﬁr ) —a - B

B (G.,G,) =1 it follows that +1.a" = 1, L oor 1 (a—B) , respectivel
y 01 > y
and the assertion follows.

Next suppose |B| = 2 . Then

Gy B (mea ™t 4 gy =g (nat 2T
Since (B,Gl) = 1 , we have a-f | q-ar + ﬁr . By (A,B) = 1 we have
(a,8) = (1) , and from a | B° it then follows that © = r = 0 . So
GO = A-(l+n) € Z . The result now follows easily, since for 15 the only
possibilities are *1 for all d , and moreover +/(-1) if d = -1 , and
tp, *p 1if d = -3 . o

In the cases of Lemma 4.10 we can treat (4.1) as follows. The smallest index
n = g(m»pL) > 0 such that m~pL | Gn grows exponentially with £ . Also,
Gn grows exponentially with n , as follows from Lemma 4.2 and Theorem 4.4,

Hence G grows doubly exponentially with t . It follows that
g(m-p)
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ml m

a=wp, ...'p S cannot keep up with G as the m, tend to infinity.
1 s m m g(a) i

It follows that if Py -...~psS is large enough, there exists a prime g

such that q | Gg(a) but q | a . Now the sequences (Rn), (Sn) have

special divisibility properties, such as

R { R if and only if n | m ,
n m

Sn ! Skn for odd k ,

ordz(Sn) < ordz(S3) for all n=>=1

Making use of this kind of properties it can be proved that q | Gn whenever

a | Gn . This gives an upper bound for the solutions of (4.1), since for

those solutions a | Gn but q t Gn . We give two examples.

Example. Let A =16, B =1, GO =1, G1 =8, w=1, Py = 2, P, = 11 . Then
=8+ 3/7, B=8-3Y7, x=ypu-= % , so A/u 1is a root of unity. Hence

[0
9% =0 , for both p =2 and p = 11 . Note that we have a sequence of type
S_  here. We have

n

n -3 -2 -1 0 1 2 3
Gn 2024 127 8 1 8 127 2024
Gn (mod 16) 8 -1 8 1 8 -1 8
Gn (mod 11) 0 6 8 1 8 6 0
Gn (mod 112) 88 6 8 1 8 6 88
It follows that ordz(Gn) =0 or 3 , according as mn 1is even or odd, and

ordll(Gn) > 0 if and only if n = 3 (mod 6) . Now, G3 | G3k holds for all
odd k . Note that G, has exactly 3 factors 2 , and 1 factor 11 . But

3
it is larger than 23-11 = 88 . Hence there is a prime q , distinct from 2
m,  m,
and 11 , such that q | Gn whenever 11 | Gn . Thus Gn =2 11 has no
solutions with m, # 0, so that there remain only three solutions: n = -1, 0

and 1 . Note that it is not necessary to know the value of q explicitly.
In this case it is 23 , and indeed it is easy to show directly that 23 | Gn

if and only if n = 3 (mod 6)

Example. Let A =5, B = 13, GO = Gl =1 . Then A = -27, a =1+ 3.p,
A = (14p)/3 . We solve Gn = +#2™ | The sequence Gn = 2-a" + X2 is related
to the sequence Hn = %o + 22" and to Rn = ( o - &" Y/ ( a - a ) by
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G ‘H -R_ = R, /3 . Since R has nice divisibility properties, we have
n n n 3n’ n

useful information on the prime divisors of Gn and Hn . We find:

n 0 1 2 3 4 5 6 7 8
n 1 1 -8 =53 -161 -116 1513 9073 25696
- 1 4 7 -17 -176 -659 -1007 3532 30751
- 0 1 5 12 -5 -181 -840 -1847 1685

Now, G = 0 (mod 16) if and only if n = 8 (mod 12) , Hn =0 (mod 16) if

n
and only if n = 4 (mod 12) , and Rn = 0 (mod 16) if and only if
n = 0 (mod 12) . Note that Gh‘Ha-R4 = R12/3 = —24'5-7‘11‘23 . Considering
the sequences modulo 5, 7, 11 and 23 we find that 24-7-11-23 | Gn-Hn for

m

all n =0 (mod 4) , and in fact 11 | Grl whenever 16 | Gn . Thus Gn = 12

implies m < 3 . It follows from Section 3 how to solve |Gn| < 8

We note that a process as described above can always be applied when dealing
with a situation as in Lemma 4.10. There is an alternative way, that we will
mention in the next section. It provides immediately a very sharp upper bound

for the m,
i

4.6, A basic lemma, and some trivial cases.

We introduce some notation, and then give an almost trivial lemma that is at

the heart of our reduction methods for both the hyperbolic and the elliptic

cases, Let for i=1, ..., s
e, = —ord A) , f. = ord lo — , . =f., - e. ,
i pi( ) i pi( gpi(z)) By i i
9. = - log (:i]/log G%
i P P, B

By Lemma 4.1 the pi—adic logarithms of «/f and -X/p exist. Note that

logp (a/B) = 0 , since the sequence (Gn) is not degenerate. Note that for

i
conjugated £, & also 1ogp§ and 1ogp§' are conjugates, hence
log(¢/¢’') € Vh-ﬂp . Hence both numerator and denominator of 61 are in
YA-Q , so 9, €@ . Hence, if ®, = 0 , we can write
Py i P i
<«
t
9, = ¥ u, ,°P. ,
i =k i, Y1
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where k, = ord (¥.) and u,
i p; i it

following lemma localizes the elements of (Gn) with many factors pi , in

e (0,1, ..., pi—l }  for all £ . The

terms of the pi—adic expansion of 61

LEMMA 4.11, Let n € NO . If ordpi(Gn) + e; > l/(pi—l) then

ordpi(Gn) = 8; + ordpi(n—ﬁi)

Proof. By Lemma 4.1 we have

°rdp Cn) T e T “dpi[{%r‘[%]] ) ordpi[[%] ' [%]n_lJ

i
With £ = (—/\/p)-(a/ﬂ)n - 1 we have ordp £y > 1/(pi—l). Hence
i
ord (§) = ord_ (log (1+£)), and it follows that
Py Py Py

a -
d G + .= d . = + 1 _l ]
or '( ) e, or i[ n-log i[ﬂ] og .[

i J

= ord (n-9,) + f. . 0
P i i

We have to exclude some trivial cases first. The case where all pi—adic
digits of 61 from a certain point on are all zero has been dealt with in
the previous section. But this case can also be dealt with as follows. Note
that 6i =r holds for all i =1, ..., s with the same r , which is the

r from Lemma 4.10. Thus, by Lemma 4.11,

m, < max [ gi + ordpi(n—r), 1 - ei ] < gi + 1 + ordpi(n—r) . (4.12)

Then we have, if A > 0 , by Corollary 4.3,
s
n-logla| < ¥ (gi+1)~log p; - log(y/|w|) + log|n-r| ,
i=1

from which a good upper bound for n can be derived. And if A < 0 , the
proof of Lemma 4.10 yields 6i =~ 0 , whence, by (4.12),

s m
16,1 = 1wl [l p; = vy
i=1
for some constant vy - Only minor changes in the results and algorithms of
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Section 4.3 suffice to deal with this inequality instead of (4.7).

Another trivial case is that of ordp (61) < 0 . Then the solutions of (4.1)
i
satisfy m < 1/(pi—1) - e, , so, by Lemma 4.11,

m, = f, - e, + ord (n-9,)
i i i P i

Since n€ Z and ord (38.,) < 0 we have ord_ (n-9,) = ord_(¥.,) . Hence
p. i P. i p. i
i i i
m, < max ( fi + ordp'(éi), 1/(pi—1) ) -ey -

1
1

Thus we may assume without loss of generality that ordp (6i) =z 0 for all

i
i=1, ..., s , and that infinitely many pi—adic digits u; . of ﬁi are
nonzero.
4.7. The reduction algorithm in the hyperbolic case.
First we give the reduction algorithm for the case A > 0 . It is based on

Lemma 4.11 and Corollary 4.3 only. Let N be an upper bound for n for the
solutions n, My, e m of (4.1). For example, N = CS-C6 as in Theorem
4.9,

ALGORITHM P. (reduces given upper bounds for (4.1) if A > 0 ).

Input: a, B, X, p, W, Pys «-es Py N .
*
Output: new, reduced upper bounds Mi for m, for i=1, ..., s, and N
for n .
(i) (initialization) Choose an n, > 0 such that g > log|u/M|/logla/Bl ;
-n
0
Y o= A = el /B ;
. = ord A) + ord lo
g e p, (logy (a/))
3/2 if P; = 2 for i =1, , S
hi - ordpi(k) + 1 if P; = 3
1/2 if Py > 5
s 8
g=7/|w|'ﬂpi’NO:=N)
i=1
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(ii) (computation of the ﬁi’s) Compute for 1 =1, ..., s the first r,

pi—adlc digits ui,L of

0
—X {
8, = ~log C—J/log Gq = Yu, ,p, .,
i Py H P B o Lt
Ty
where r. 1is so large that p. = N, and u, = 0 ;
i i 0 1,ri
(iii) (further initialization, start outer loop) S; o ' T, + 1 for
i=1, ..., s ;j:=1;
(iv) (start inner loop) i =1 ; Kj = _false, ;
(v) (computation of the new bounds for m, terminate inner loop)
- s
o > .
Si,j :=nmin { s € WO | p; 2 Nj-l and ui,s =0} ;
if s < s,
- i,j i, j-1
then K, := _true. ;
if 1< s

then i :=1i + 1 ; goto (V) ;

(vi) computation of the new bound for n , terminate outer loop)

s
Nj := min ( Nj—l’ [izlsi’j.log P, - log g )/logla| ) ;

if N, =2n and K,
J o = 3]
then j :=j + 1 ; goto (iv) ;
*
else N = max ( Nj’ n, )
Mi = max ( hi’ g + Si,j ) for i=1, ..., s ; stop.
THEOREM 4.12. With all the above assumptions, Algorithm P terminates.
*

Equation (4.1) with A > 0 has no solutions with N =n <N, m; > Mi for
i=1, ..., s

Proof. Since the pi—adic expansion of ﬂi is assumed to be infinite, there

exist r, with the required properties. It is clear that 5, 4 < T < S50
and that N, < N, So s. . < s, . helds for all j = 1 . Since
J j-1 i,j i,j-1
s, . >0 , there is a j such that N, = n or s, ., = S. . for all
i,j 0 i,j i,j-1

i=1, ..., s . In the latter case, Kj remains _false. ; in both cases the
algorithm terminates.

We prove by induction on j that m < g, o+ s, i for i=1, ..., s, and

n < Nj hold for all j . For j = 0 , it is clear that n < NO . Suppose

n < Nj—l for some j =z 1 . Suppose there exists an i such that
m, >g, +s, . . From Lemma 4.11 we have
i i i,j
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ordp'(n—ﬁi) =m, - g, =2s, . +1,

i i i i,j

hence, by wu, =0,
i,s, .
i,j
83 j s
n = 2 u, L~pL = p RERPS N._1 s

t—0 J

which contradicts our assumption. Thus, m, < g; + s j for i =1, ..., s

Then from Corollary 4.3 it follows that

(8¥s; )10 by - LogCy/I¥]) | /loglal

ne| 3

i=1
hence n < Nj . a
Si s
Remark 1. In general, one expects that 1 'J %ill not be much larger than
Nj , 1.e. not too many consecutive pi—adic digits of 61 will be zero. Then

N, 1is about as large as log Nj—l . In practice, the algorithm will often
terminate in three or four steps, near to the largest solution. The
computation time is polynomial in s , the bottleneck of the algorithm is the

computation of the pi—adic logarithms.

Remark 2. Pethsé [1985] gives for s = 1 a different reduction algorithm.
For a prime P; he computes the function g(u) , defined for u e N as the
smallest index n = 0 such that Gn = 0 and p? | Gn . Note that if the
pi—adic limit 1im g(u) exists, then by Lemma 4.11 it is equal to 61

u->®

@

Remark 3. If B = *1 (hence A > 0 ), we can extend the sequence {Gn)n=0

to negative indices by the recursion formula

Gn_l = A.B.Gn - B~Gn+1 for n=20, -1, -2,

(cf. (4.3)). Then (4.5) is true for n < 0 also. We can solve equation (4.1)

with n € Z not necessarily nonnegative, by applying Algorithm P twice: once

for (G )oo , and once for the sequence (G')co , defined by G' =G
n ' n=0 n n o n n=0 n -n
Note that G/ =B -(sa +x-f) , and
log  (-u/X) log  (=A/w)
9, = - b =+ % = -9, for i=1 s
i log  (a/B) log_ (a/B) i ’ ’
Py Py
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Now, instead of applying Algorithm P twice, we can modify it, so that it
works for all n € Z , as follows. Lemmas 4.8 and 4.11 remain correct if we
replace n by In] . In Theorem 4.9 the lower bound for ng must be
replaced by

ng > max ( 2, |loglu/rlI/1ogla/Bl, |log|A/ull|/logla/Bl ) .

and vy has to be replaced by

-n -

y = min (Al = lul-la/Bl Oy fwl = IA-1a/Bl )

Similar modifications should be made in step (i) of Algorithm P. Further, in

step (ii), T should be chosen so large that

r,
. i
if Py » 2 then p; > NO and ui,r. = 0, ui,r. *p - 1;
i i
rl~l
- .
else pi > N0 and ui,r, > ui,r.-l s
i i
and similar modifications have to be made in step (v) for 5 5o With these

changes, Theorem 4.12 remains true with n replaced by |n|

We conclude this section with an example.

Example. Let A =6, B =1, G, =1, G, = 4, w = 1, Py = 2, P, = 11 . Then

0 1
a=3 4292, B=3 =252, A= (1+242)/62, p=(-1+272)/4:72,
and A = 32 . With ng = 960 = 1.142x1026 we find CA < 2.49X1020 . With the
modifications of Remark 3 above we have ¥y > 0.323, C5 < 1.76,
m m
C6 < 2.62x1026, CS-C6 < 4.62)(1026 . Hence all solutions of Gn = 2 1~11 2
satisfy |n| < 4.62X1026, max(ml,mz) < 2.62x1026 . We perform the reduction
Algorithm P step by step. (We write the p-adic number ), uL-pL as
£=0
0.u0u1u2.... , and if p > 10 we denote the digits larger than 9 by the
symbols A, B, C, ... ).
(i) ng = 2, v > 0.303, g = 0, g1 = 1, g > 0.0275,
1 26
hl = -1, h2 = NO = 4.62x10
(ii) 61 = 0.10111 10111 01000 11100 10100 01001 10001 10010

00001 11101 01000 10000 01001 10011 10101 01101
11100 01011 00001 11010 00011 01001 01010 00101
10001 01011 00000 11001 01011 11101 10100 01011
001.... ,
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9, = 0.A9359 05530 7330A 1A223 96230 3A006 A3366 83368

2
8270.... ,
so r, = 90 (sinc =1 =0 289 > N, )
17 © Y1897 > Y1907 0
; B 29
r, = 29 (since u2,29) =6, 11 > NO ).

(iii) 51,0 = 91, SZ,O = 30 ;
(v)=(vi) Sl,l = 90, 52’1 = 29, Kl = _true., Nl < 76.9 ;
(v)-=(vi) 51’2 = 10, 5212 = 2, K2 = _.true., N2 < 8.7 ;
(v)-(vi) 51’3 - 6, 52’3 = 1, K3 = _.true., N3 < 5.8 ;
(v)—=(vi) 51,4 = 6, SZ,A = 1, K4 = ,false., N4 < 5.8
Hence |n| =< 5, my < 6, m, < 2 . We have
n l -5 ~4 -3 -2 -1 0 1 2 3 4 5
Gn I 2174 373 64 11 2 1 4 23 134 781 4552
So there are 5 solutions: with n = -3, -2, -1, 0, 1

4.8. The reduction algorithm in the elliptic case.

We now present an algorithm to reduce upper bounds for the solutions of (4.1)
in the case A < 0 . The idea is to apply alternatingly Algorithms P and one
of H and I. Let N be an upper bound for n , for example n = C7 as in
Theorem 4.9.

AILGORITM C. (reduces upper bounds for (4.1) in the case A <0 ).

Input: o, B, A, 4, W, Py, ..., P, N
*
Output: new, reduced upper bounds N for n , and Mi for m, for
i=1, ..., s
(i) (initialization) NO = [N] ; j =17
. = ord A) + ord lo a
g; b, OV p, (108, (2/8)
3/2 if p; = 2 for i =1, , S
hi = ordpi(x) + 1 if p; = 3
172 if p; 2 5
(ii) (computation of the 6i's, @, ¥ ) Compute for i =1, ..., s the

first r, pi—adlc digits ui,L of
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1

Y
5. = -1 i W
ngi[ W/ %p.

= Tu Py,
[;] LE i, ¢ Py

r,

. i
where r, is so large that Py > NO and u, 0 ; compute

¥ = Log(-A/u)/2xi , and the continued fraction

1
le] = |§;;-Log(a/ﬂ)| =10, ap, oo, ato’ o]
with the convergents pi/qi for i =1, ., LO , where LO is so
large that q£0~l < NO < qLO if y =0 ; qLO > A-NO and

lla | > 2-8,/q if ¥ =% 0 and such {, can be found in a reasonable
LO 0 CO 0

amount of time, q > 4-NO otherwise;
0

(iii) (one step of Algorithm P) For i =1, ., s put

. s .
Mi,j I= max [ hi' g; + min { s € NO | 12 > Nj—l and ui,s = 0 ) ] ;
(iv) (one step of Algorithm H or I)
if =0
s Mi j
then A := max(al,...,aL._l) ;v o= |w|- E P R
n0/2
choose ng = 2/log B such that B /nO = v/2-{pul 5
compute the largest integer N, such that
N./2 J
B /NS (A42) /b
N = max(n,,N.) ;
.J O J) -
if Nj < Nj—l then compute Lj with 9 1 < Nj < qu ;
j i=3j+1; goto (iii) ;
else if ”q ~¢“ > 2N, ./q
Lj—l j-1 £j—l
then N, := [2~1og[q2 v/b-fu) N, ]/1og B] ;
i Lj—l j-1
else compute K € Z with |K—qL Y| =< % ;
j-1
compute mng € Z, 0= n, < q{;j_l , with
K + NPy = 0 (mod 9 )
j-1 j-1

if n = n, is a solution of (4.1)

then print an appropriate message;

N, := [2-log(q, v/|ul)/log B] ;
J -1
if N. <N,
= 3] j-1
then compute the minimal tj < Lj—l such that
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qu > A-Nj and ”qu-¢” > Z.Nj/ql, (if such Lj

3

does not exist, choose the minimal tj such that

qL. > A-Nj ), j =3+ 1 ; goto (iii) ;
J
5 3 * . . = 3 = .
(v) (termination) N := Nj-l ; Mi : Mi,j for i 1, ..., s ; stop.

The following theorem now follows at once from the proofs of Lemmas 4.6, 4.7

and Theorem 4.12.

THEOREM 4.13. Algorithm C terminates. Equation (4.1) with A < 0 has no
*

solutions with N < n < N and mi > Mi for 1 =1, ..., s , apart from

those spotted by the algoritm.

We conclude this section with an example.

Example. Let A =1, B=2,6,=2,G =3, then A=-7, a=(1+ V-7 /2
and A = ( 2+ /-7 )//-7 . Let w = #1, Py = 3, P, = 7 . We have with n, = 2

0
the following results: C4 < 6.40X1016, C3 < 9.14X1029, C7 < 7.42x1030,
22
max(ngl,CS,Z) < 2.30x10 . Further, g1 = 1, gy = 0, hl = 1, h2 = 0 . By
Theorem 4.9 we may choose N0 = 7.42x1030 . We have
@ = ( ™ - arctan(¥Y7/3) ) / 2=«
={0, 2, 1, 1, 2,16, 6, 1, 2, 2, 13,
1, 1, 3, 1, 1, 2, 1, 2, 1, 1,
i, 1, 1, 9, 2, 1, 2, 1, 7, 1,
6,269, 4, 3, 1, 1, 50, 2, 1, 6,
i, 1, 2, 1, 1, 7, 1, 61, 1, 12,
3, 7, 4, 7, 3,121, 1,21, 2, 1, 7, ],
¥ = ( © - arctan(4-/7/3) ) / 2n
= 0.29396 28336 99645 40267 89566 60520 01908 06203... ,
61 = 0.20010 12210 00011 02102 00211 00222 02220 12021
10020 20202 21102 00121 01000 01002 11100 20122
11111 22202 21021 02212 2200... ,
62 = 0.32542 12042 43561 34020 61561 13452 10116 33152
25336 45044 11254 55033...
Now we choose {4, = 61 , since

0
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9y = 142 51183 31142 44361 19375 51238 81743 > A-NO ,
and |]q61-1/)” = 0.24487... > 2:No/q,, = 0.104... . We have Mpq = 67,
M2 1 = 37, and we find N1 = 637 . Next we choose Ll = 9 |, since
qg = 10102 > 4x637  and  [qg-¥] = 0.38745... > 2x637/10102 . We have
M1’2 =7, M2,2 =4 , and we find N2 = 74 . Next we choose LZ = 6 , since
qg = 1291 > 4x74 , and ||q6-¢|| = 0.49398 > 2x74/1291 . We have M, , =6 ,
M2 3 = 3, and we find N3 = 60 . In the next step we find no improvement.
Hence n < 60, m = 6, m, < 3 . It is a matter of straightforward computation
m, m
to check that there are only the following 6 solutions of Gn = 3 1~7 2
2 2 2
G1 = 3, G2 = -1, G3 = -7, G5 = 37, G7 =1, G17 =377

4.9. The generalized Ramanujan-Nagell equation.

The most interesting application of the reduction algorithms of the preceding

section seems to be the solution of the generalized Ramanujan-Nagell equation

(4.2). Let k be a nonzero integer, and let Pys s Pg be distinct prime
numbers. Then we ask for all nonnegative integers x, Zys o cees Zg with
s z,
x2 + k = ﬂ pi1
i=1
First we note that z, = 0 whenever -k is a quadratic nonresidue
(mod pi) . Thus we assume that this is not the case for all 1i . Let P | k
for i =1, ..., t and Py I k for i =1t+1, ..., s . Let ordp (k) be odd
i
for i =1, ..., r and even for i = r+l, ..., t . Dividing by large enough
powers of Py for i =1, ..., t , (4.2) reduces to a finite number of
equations
2 sz
Do-x1 + kl - 1 P (4.13)
i=r+1
with Py ! kl for i =1, ..., s , and DO composed of Py» ---» Py only,

S-r

and squarefree. We distinguish between the 2 combinations of zi odd or

u

<

even for i = r+l, ..., s . Suppose that zi is odd for i = r+l,

and even for i = u+l, ., S . Put
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u (zi—l)/Z s z£/2
y= 1 »; N | I - PR (4.14)
i=r+l i—u+l

Then, from (4.13),

2 b 2
Dy-x] - ({ ' N Py )y = -k . (4.15)
i=r+1

u
Put D = Dg- M p; - Then (4.14) and (4.15) lead to
i=r+1

s m, , (4.16)

u
with v =1y ]| P;s W =X k, = kl- N P; > and also to
i=r+l i=r+1

s m, s (4.17)

with v = Do-xl, w o=y, k2 = —kl~DO . We proceed with either (4.16) or

(4.17), whichever is the most convenient (e.g. the one with the smaller

lkyl )

If D=1, then (4.16) and (4.17) are trivial. So assume D > 1 . Let € be

the smallest unit in Z + YyD-Z with € > 1 and N(e) = *1 . It is well
2 2

known that the solutions v, w of v - D-w = k2 fall apart into a finite
number of classes of associated solutions. Let there be T such classes, and
choose for r =1, ..., T in the 7 th class the solution VT’O, wr,O such
that T = VT’O + WT,O'/D > 1 is minimal. Then all solutions of
v2 - D-w2 =k are given by v = v , w o= 1w , with
2 T,n 7,n

vf,n - [ 71.€n + 7;'6 : ]/2 (4.18)

wr,n = [ 71~en - 7;~e_n ]/2-/D
for : e Z , where 7& =V, oo " wr,O'/D . That is, (vfyn}:;_eo and
(wf,n)n=—m are linear binary recurrence sequences. Now, (4.16) and (4.17)
reduce to T equations of type (4.1). If k2 =1, then T =1, Y <6
71 = e_l . If k2 | 2-D, k2 » 1 , then it is easy to prove that 73 = |k2|-e,
7&2 = |k2|-e_1 , so that
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v gl [ G i) G )P 2

]2n+1]/2-/D.

2n+l ,
T W ) KN O
In both cases, (4.16) and (4.17) can be solved by elementary means (see
Section 4.5, of related interest are Stermer [1897]), Mahler [1935], Lehmer
[1964], Rumsey and Posner [1964] and Mignotte [1985]). If k2 } 2-D , then we

s m,
: : . i
apply the reduction algorithm to one of the equations Ven = 1 P,
! i=r+1
s my
wooo= ﬂ P . Note that n is allowed to be mnegative, since

i=r+1
B = *1 , so we can use the modified algorithm of Remark 3, Section 4.7.

Thus we have a procedure for solving (4.2) completely. It is well known how
the unit € and the minimal solutions VT,O’ wT,O for r =1, ..., T can
be computed by the continued fraction algorithm for D . We conclude this
section with an example. It extends the result of Nagell [1948] (also proved

by many others) on the original Ramanujan-Nagell equation x2 +7 = 2%

THEOREM 4.14, The only nonnegative integers x such that x2 + 7 has no

prime divisors larger than 20 are the 16 in the following table.

X x2 + 7 X x2 + 7 X x2 + 7
0 7 7 56 = 2°.7 31 968 = 2°.11°
1 g - 2° 9 88 - 2°.11 35 1232 = 2%.7.11
2 11 11 128 = 2/ 53 2816 = 28.11
3 16 = 2% 13 176 = 2% 11 75 5632 = 2°.11
5 32 = 2° 21 448 = 2%.7 181 32768 = 212
273 74536 = 2°.7.11°

Proof. Since -7 1is a quadratic nonresidue modulo 3, 5, 13, 17 and 19 ,

we have only the primes 2, 7 and 11 1left, Only one factor 7 can occur in

2 .
x~ + 7 , thus we have to solve the two equations

x2 +7 =2 "-11 , (4.19)
x4+ 7=7-2"11 . (4.20)

Equation (4.20) can be solved in an elementary way. We distinguish four

cases, each leading to an equation of the type
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with ¢ } 2D , and either y or =z composed of factors 2 and 11 only.

We have:
21/2 22/2

(i) z1 even, z, even, y=2 -11 , z =x%x/7, c= 1, D = 7
(zl+l)/2 22/2

(ii) z odd, z, even, y = 2 -11 , z = x/7, c= 2, D= 14 ;

1 2
z,/2  (z,-1)/2
I

(iii) z1 even, z, odd, y =%, z =2 s c=-7,D= 77 ;
(zl—l)/2 (22—1)/2
2 <11 c=-7, D=154 .

(iv) z odd, z odd, y = x, 2z =

2

’

1

In the first example of Section 4.5 we have worked out case (i). We leave the
other cases to the reader.
Equation (4.19) can be solved by the reduction algorithm. Again we have four

cases, each leading to an equation of the type

with either y or =z composed of factors 2 and 11 only. We have

21/2 22/2

(i) z, even, z, even, y = X, z = 2 211 , c=-7,D= 1;
(zl—l)/2 22/2

(ii) zy odd, z, even, y = X, z =2 <11 s ¢c=-7,D= 2;
zl/2 (22—1)/2

(iii) z, even, z, odd, y =x, z =2 <11 , c=-7,D=11;
(zl—l)/2 (22—1)/2

(iv) zy odd, z, odd, y = x, z = 2 <11 ,c=~-7,D=22

Case (i) is trivial. The other three cases each lead to one equation of type
(4.1). In the example in Section 4.7 we have worked out case (ii). With the
following data the reader should be able to perform Algorithm P by hand for
the cases (iii) and (iv), thus completing the proof. In these cases N < 1030

is a correct upper bound.

10 + 3-/11 , A = ( 2 + Y11 )/2-/11 ,

Case (iii): a

61 = 0.10011 01000 00110 10100 00110 10110 01001 11110
11011 10010 00001 10110 10111 10100 00110 01101
01010 10010 11101 11001 10000 10010 01010 11011
00010 00111 01110 00101 01101 01111 10101 11110
10.... ,

9, = 0.23075 76425 39004 26090 A92A1 03757 07314 58414
7A238. ...

Case (iv): a =197 + 42-/22 , x = ( 9 + 2-¥22 )/2-Y22 ,
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0.11101 01101 01110 01010 10111 10001 00100 00011
10000 00110 10101 01100 01101 01111 01101 10101
01011 10100 01100 11101 10011 00011 00010 11110
10101 01100 10011 11111 01001 01110 00000 01110
011.... ,

52
]

0.6A001 68184 22921 902A0 724A4 16769 45650 16482
SAGAA. ... . a

@
I

Remarks. 1. The computation time for the above proof was less than 2 sec.

2. Let d(X,Y) = a-X2 + b-X-Y + c-Y2 be a quadratic form with integral
coefficients, and A = b2 - 4-a-c positive or negative. Let k be a nonzero

integer, and Py -oos Pg distinct prime numbers. Then we note that

2

4.a-9(X,Y) (2~a~X+b~Y)2 - AYT,

so that the diophantine equations

S Zi S Zi
o(x,k)y = [[p.”, X, [lp;) =k
. i . i
i=1 i=1
in integers X = 0 and Zys o oees Zg € NO , can be solved by our method.

4.10. A mixed quadratic-exponential equation.

In this section we give an application of Algorithm C to the following

diophantine equation. Let

B(X,Y) - a-X> + b-X-Y + Y2
be a quadratic form with integral coefficients, such that D = b2 - 4-a-c 1is
negative. Let q, v, w be nonzero integers, and Pys ---s Py distinct prime
numbers. Consider the equation
s My n
d(X,w: ﬂ P; ) = v-q (4.21)
i=1
in integers X , and n, My, ..., M € NO

Let B, B be the roots of &(x,1) = 0 . Let h be the class number of
Q(/D) . There exists a = € Q(/D) such that we have the principal ideal

equation (r) - (7) = (qh) ,Put n = ny + h-n2 , with 0 < ny < h . Then
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®(X,Y) = v'qn is equivalent to finitely many ideal equations

n n

= — 2 =2
(a-X-a-f-Y)-(a-X-a-B-Y) = (g)-(o)-(n} "-(m) ,
- ny
with (o)+(o) = (a:v-q ~) . Hence we have the equations in algebraic numbers
"2 -
a-X - apg¥Y¥=+vynm a-X - a-g-Y=n+vynm
B _ Ny B _ Dy
a-X - a-p-Y¥=r+ynm a-X - agyY=rvyn

where vy 1is composed of o , units, and common divisors of a-X - a:-8:-Y and
a-X — a-B-Y . Note that there are only finitely many choices for vy

possible. Thus, (4.21) is equivalent to a finite number of equations

= i i 2 - =2
a-(p-py-w- [l p, " =vyn " -y ",
i=1
- R J——
or, if we put X = y/a-(B8-8) and Gn = A + A s
2
s mg
Gn = w- ﬂ P, - (4.22)
2 i=1
Here, {Gn )Z o is a recurrence sequence with negative discriminant. So
2 2

(4.22) is of type (4.1), and can thus be solved by the reduction algorithm of

Section 4.8.

Before giving an example we remark that (4.21) with D > 0 is not solvable
with the methods of this chapter. This is due to the fact that in Q (/D)
with D > O there are infinitely many units, hence infinitely many

possibilities for Another generalization of equation (4.21) 1is to

Y
n t Ny

replace ¢ by I q . This problem is also not solvable by the method of

this chapter, since it does not lead to a binary recurrence sequence if

t = 2 . These problems can however be dealt with using multi-dimensional

approximation techniques, that are presented in other chapters of this

thesis. See Chapter 7.

We finally present an example.
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THEOREM 4.15. The equation

m m m m
X2 -3ty 2x4 2-(3 1y

in X€Z, n, m;, m;, € N, has only the following 24 solutions:

1’ 72 0

n my m, X n my m, X

1 1 0 -1, 4 5 2 0 -10, 19
1 0 0 -4, 5 6 0 0 -26, 27
2 0 0 -6, 7 7 0 0 -37, 38
3 0 1 2, 5 7 3 0 2, 25
3 1 0 -7, 10 11 1 1 -137, 158
4 0 1 -6, 13 17 2 2 -829, 1270

Proof. Put B =( 1+ /-7 )/2 . Then

X2 - XY+ 2-Y - (X-B-Y) - (X-B-Y)

Note that Q(¥/-7) has class number 1 , and that

_1+Y/7 1 -7

3 3 o Il = (24 /-7)-(2-Y-7)

m, m
Suppose vy | X - B-Y and v | X - B-Y . Then vy | (B-B)-Y = = /-7-3 1-7 2

On the other hand, v | 11-2" . Tt follows that + = *1 , hence X - 8-Y and
X - B-Y are coprime. Thus we have two possibilities:

1+ /-7 ]n

X - gy 5

(2% /7)) (

]
1+

X -p8Y

L+/-74n
(2F/-7)-(——)
in each equation the 2nd and 3rd +* being independent. Hence we have to

solve
. . . m
R T A LY LIS T AL R R P 3
with Giii - céj) - Z'Giii for =1, 2, and AP =3P o 2wy a7,
so that G(l) = G(z) =1, G(l) =3, G(z) = -1 . Note that 6?1) - _ﬂ$2) for
0 0 1 i i

1
D _ _y@)

i=1,2, and ¥ For j =1 we have solved (4.22) in the

example of Section 4.8. It is left to the reader to solve (4.22) for j = 2

This can be done with the numerical data given for the case j =1 . O

Remark. The computation time for the above proof was less than 3 sec.
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