CHAPTER 7. THE SUM OF TWO S-UNITS BEING A SQUARE.

7.1. Introduction.

Let Pys --os Py (s 21) be distinct primes, and let S be the set of
positive rational integers which have no prime divisors different from the
P; - A rational number is called an S-unit if its absolute value is a

quotient of elements of S . Thus the set of S-units is

*1 *s
{ £ Py .- Py | x; € Z for i=1, ..., s}

We study the diophantine equation

in x, y S-units, and z € @ , where the set of primes pl, RN ps is
given. We show how to find all solutions of this equation, using the theory
of p-adic linear forms in logarithms, and a computational p-adic diophantine

approximation method. We actually perform all the necessary computations for

solving the equation completely for { Pys o0 Py y=(2, 3, 5, 7))
We start with getting rid of the denominators. Let x, y, z be a solution.
There is a d € S such that |d-x], |d-y|] € § . Put d = d1~d§ , Where
dl’ d2 € S and d1 squarefree. Then
d,-dx +d,-d-y = (d,-d -z)2
1 14y 1°% ’
which has the same form as x + y = z2 , but now |dl~d-x|, |d1-d-y| e Scz
and dl-d2~z € 7 . Without loss of generality we may therefore study
x +y =22, (7.1)
where
x€esS, tyes, zel,
xzy, z>0, (7.2)

(x,y) 1is squarefree

We shall prove the following results.
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THEOREM 7.1. Let P+ - Py be given. There exists an effectively
computable constant C , depending on Pys -oos Py only, such that any
solution X, y, z of equation (7.1) with conditions (7.2) satisfies

max (x,ly|,z) < C

THEOREM 7.2, Let { Py ---s Py )y = {2, 3, 5, 7} . Equation (7.1) with

conditions (7.2) has exactly the 388 solutions given in Table I.

Remarks. 1. The Tables are given in Section 7.9. We stress that the aim of
this chapter is not only to prove these theorems, but to show as well that

for any given set of primes ({ Pys -+» Py )} a result similar to Theorem 7.2

can be proved along the same lines, in a more-or-less algorithmic way.
2. Equation (7.1) with conditions (7.2) can be seen as a further

generalization of the generalized Ramanujan-Nagell equation

x + k = Py --c°P s (7.3)

(cf. Chapter 4), namely by taking k| € S arbitrary instead of k € Z
fixed. The method of this chapter to solve (7.1) is also a generalization of

the method of Chapter 4 to solve (7.3).

Equation (7.1) can be transformed into a number of Pell-like equations. Put

where D, u € S , and D 1is squarefree. There are only 28 possibilities

for D . Now, (7.1) is equivalent to a finite number of equations
z- - Du” =y (7.4)

in wues , *yes | z € Z , with z >0 and (u,y) = 1 . We treat
equation (7.4) by factorizing its both sides in the field K = Q(/D) . When

dealing with equation (7.4) we allow z and u to be negative.

7.2. The case D=1

First we consider the special case D =1 . Then (7.4) is equivalent to
z+u-=y

z-u=y,
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where = 'y, , and € S , + € S , and > . Subtraction
y yl 2 y1 y2 71 ¥y
yields

2:u = Yy~ Yy o (7.5)

where now all variables u, Yi» Y9 (apart from the sign) are in S , hence

in Z . By (u,yl) = (u,yz) = 1 , equation (7.5) is of the form a + b = c ,

or 2-a+ 2:b = 2.-¢c , where a, b, ¢ are composed of primes 2, Py, ---s Py
only, and (a,b) =1, a=2=b > 0 . In Chapter 6 it was shown how to solve
such an equation a + b = ¢ . For our ( pl, e, ps y = (2, 3, 5, 7)) we

have the following result.

LEMMA 7.3. Let { Py ---s P Yy = (2, 3, 5, 7 ) . Equation (7.1) with
conditions (7.2) and D =1 has exactly the 95 solutions given in Table 1

with D =1

Proof. From Theorem 6.3 it follows that a + b = ¢ with a, b, ¢ € S ,
(a,b) =1, a=b has exactly 63 solutions, that are easy to compute. Each
of these gives rise to three possibilities for (7.5):

if 2| a then (u,y,y,) = (a,b,c), (b,2¢,2a), (c,2a,~2b),

if 2 | b then (u,yl,yz) = (a,2b,2c), (%b,c,a), (c,2a,-2b),

I

if 2 | ¢ then (u,yl,yz) (a,2b,2c), (b,2c,2a), (%c,a,-b).

Of the thus found 189 possibilities, the 95 ones given in Table I with D =

1
satisfy x =y and z > 0 , whereas the others don't. 0

This completes our treatment of the case D =1

7.3. Towards generalized recurrences.

From now on, let D > 1 . Put K = @(/D) . Let o : K > K he the
automorphism of K with o(/D) = —/D . For any number or ideal X in K we
write X' for o(X) , for convenience.

Let pi for i =1, ..., s be the prime ideal in K such that

ordp (pi) >0 . If Py splits in UK , this is well defined if a choice has
i

been made from the two possibilities for D (mod pi) . Put for a solution
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z, u, y of (7.4)
x =z + u-yD .
Then y = x-x' , and by (u,y) =1 we have
min (ordpi(u), ordpi(y) ) =0. (7.6)

Equation (7.4) leads to the conjugated ideal equations

s a; bi
CONE N I P
i=1
(7.7)
s a; bi
x = T»; "p;
i=1
where a;, bi e WO , and bi =0 if pi = pi We need the following

auxiliary lemma.

LEMMA 7.4. If € € K and ordp({) - ordp(ﬁ') for a prime p , then

1A

ord ord =&
p(5) p(€ £Y)
Moreover, if p =2 and D =1 (mod 8) , then

ord,(§) = ord,((§-¢")/2) ,

and, if p =2 and D

2, 3 (mod 4) , then

ord, (§) < ord, ((§-£')/2/D) + ; .

Proof. This is an easy exercise, which we leave to the reader. g

We distinguish, as usual, three cases for the factorization of the prime P
in K : it may split, ramify or remain prime. See Borevich and Shafarevich

[1966], section III1.8.

(i). P; remains prime in K . Then P; } D, and if P; = 2 then

D=5 (mod 8) . We have (pi) = pi = pi , and from ordp (x) = ordp (x') and
i i
Lemma 7.4 we obtain
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ord = 2-ord < 2-ord -x') = 2-ord_ (2-u-/D
pi(y) pi(X) pi(x x") pi( )

It follows, using (7.6), that
if P; # 2 then ordpi(y) = 2-ai =0 ,

if . =2 then ord, (y) = 2-a, =0, 2, and if a, =1 then
pl 2 y i i

ordz(u) =0 .

(ii). Py ramifies in K . Then P | D if P =2 ,and D=2, 3 (mod 4)

. _ 2 _ g _ ry = L.
if P; = 2 . We have (pi) = pi, pi = pi , and ordpi(x) = ordpi(x )y = S8y

From Lemma 7.4 we find

ord (y) 2:0ord_ (x) <1+ 2-ord_ ((x-x')/2-YD) = 1 + 2-0rd_ (u)

By (7.6) we obtain

ordp (y) =a, =0, 1, and if a; = 1 then ordp (u) =0 .

: i
i i
(iii). P; splits in K . Then P Y D , and if p; - 2 then
= - .ot ' -
D=1 (mod 8) . We have (pi) pi pi, pi = pi . Further, ordpi(pi) 1,
ordpi(pi) = 0 . Hence ordpi(x) =a; , ordpi(x )y = bi . If a; = bi then

from

ordpi(y) = 2~ordpi(x) < 2-ordpi((x—x’)/2) = 2~ordpi(u)

we obtain by (7.6) that

ordpi(y) =a; = bi =0 .

1f a; » bi then ordpi(y) = a; + bi > 0 , hence ordpi(u) =0, by (7.6).
We infer in this case
ordp.(y) = a, + bi > 1+ 2~m1n(ai,bi) =1+ 2-ordp'(x—x')

1
1 1

=1+ 2-ord 2
or pi( )

It follows that
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ordpi(y) = max(ai,bi) s mln(ai,bi) =0 if P, * 2,

ordpi(y) = max(ai,bi) + 1, mln(ai,bi) =1 if p; = 2

Put bO = min(ai,bi) if p; = 2 occurs, and b0 = 0 otherwise. (Note that

min(ai,bi) = 1 may occur only if pi ~ pi , hence only if Py = 2 splits).

Let us assume that the splitting primes of Pys -y Pgo@re pr, ..., Py

for some 0 < t < s . Put

h.
For i =1, ..., t , let hi be the smallest positive integer such that pil

is a principal ideal, say
h

i
o= ()

i
determined up to multiplication by a unit. Thus we may choose ™ such that

If h denotes the class number of K , then hi | h . Now, n, € K is

x| > |x!| if i€,
1 1

|n.] < |x!] if ie I’
1 1

For i =1, ..., t , put
| a, -b, | =c.-h, +4d, ,
i i i i
with ¢,, d, e N, , and 0 <d, < h, - 1 . Consider the ideal
i i 0 i i
bO di di s ai
a=(2 e, [ 9! M »,
. i, i . i
iel iel’ i=t+1
From the above considerations it follows that, for given K , Pis -oon Py

there are only finitely many possibilities for a . By (7.7) it follows that

¢y cy
) =a- [l (a1 ()
iel iel’
(namely, |ai—bi| = max(ai,bi) if Py = 2 , since then mln(ai,bi) = 0 ; and
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lai_bil = max(ai,bi) -1 if P; = 2 and bO =1 ). Hence a 1is a principal

ideal, say
a = (a)

for an a € OK . Up to multiplication by a unit, there are only finitely many

possibilities for a . Let ¢ be the fundamental unit of K with € > 1

Now, (7.7) leads to the system of equations

c, c.
ta - el N n T = t

iel . iel”’

It

x =2z + uwh

) (7.8)
n 1 €4
x' =z - ubD=1ta"-¢' - ﬂ o ﬂ w,
. i .
iel iel’
where ne€Z . Put for ne Z , my, ..., M€ NO , and for each possible a
a n My " & n M My
G (nm,,...,m ) = e ﬂ T, H ! - ce! - ﬂ - ﬂ .,
e L € 2D e e 2/D ier ¥ ierr '
n my my ' o,n My ™y
Ha(n,ml,..‘,mt) = %~e I S Y + %~e' LI S .
iel iel’ iel iel’
Then (7.8) is equivalent to
+u=20G6 (n,e,,...,c.)
a 1 t (7.9)
+ -
+ 2z Ha(n,cl,...,ct)

The functions Ga and Ha are generalized recurrences in the sense that if
all variables but one are fixed, then they become integral binary recurrence

sequences.

7.4. Towards linear forms in logarithms.

Let us write

u, = ord_ (u)
i P
for i =1, ..., s . Put for each «
IU ={i}tl=<1i=<s, ordpi(Ga(n,ml,...,mt)) > 0 occurs
t
for at least one (n,ml,...,mt) € Z X NO )
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Note that since (u,y) = 1 the sets IU' I, I are disjunct. We proceed

with the first equation of system (7.9). Written out in full detail it reads

c. C. , c, c, u,
a n i i a n i i i
e w7 ] w - et el Sl = b, (7.10)
2D et ogerd 2/D ier 1 qer't ier’
Now, I, I', I depend on a , which depends on the particular solution of

U
equation (7.4) that we presupposed. However, we know that o belongs to a

finite set, which can be computed explicitly. So if we can solve (7.10)
completely for each a of this set, then we can find all solutions of (7.9),

hence of (7.1).

The set of the a’s may be reduced, without loss of generality, as follows.

If D = 1 (mod 8) then bO =0, 1 may both occur, with a = ag, 2~a0
respectively. We only have to consider 2~ao , because if u = Ug, 2 =24 is
a solution of (7.9) for a = o > then u = 2-u0, z = 2-z0 is a solution of
(7.9) for a = 2~a0 . Hence it is not necessary to consider a = o if also
a = 2~a0 is already being considered. By the same argument, if
D =5 (mod 8) then with a = o such that ordz(ao) =0 also a = 2‘00
may occur, so that we only have to consider the latter. Note that it may now
occur that (u,y) = 2 . The condition (u,y) = 1 is used only to ensure that
IU and I U I' are disjunct. This remains true in the above cases with
(u,yy = 2 . Further, if (ao) # (aé) for some ag then we only have to

consider one a of the pair ag, aé Namely, by e€-¢’' = *1 we have (we
denote the I, I’ belonging to o by IO’ Ié , then the I, I' belonging
to oy are IO’ IO )
Gaé(n,ml,. )m )
aé n i ‘i % n 4 3
= ! - e’ ’ .
27D € g'nl g L 575 € Q'nl g L
0 0 0 0
aé -n °i i %0 -n °i ¢i
=+ Ler ' - '
*l9mpe Q L Q,wl 27D € g L Q’wl
0 0 0 0
=%6, (nymy,...m)

and analogously
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From equation (7.10) we now derive pi—adic linear forms in logarithms, in

three different ways, according to i € I, I' or IU . Put

3. B _ . _ _1
Ty =3 if P; = 2, 7 1 if Py 3, 7 2 if Py =5

Then 1 > 1/(pi—1) , hence if ordp (&) = 7 for a & € K then
i

1+ = d . .
ordpi(logpi( £)) = or pi(6) (7.11)

We now have the following result.

LEMMA 7.5. Let n, c,; (iel1vul ), ug (ie IU ) be a solution of
(7.10).

(i). For 1 € IU put

Ai = ordp'(Z/D/a’) s
1
a € 7rj
A, = log (=) + n-log (=) + ¥ c.-log (=%)
o Py @ P ¢ j€1 Py 7y
"3
- 2 c,-log (=
jerr 3 P Ty

If u, + X, 2z v, then
i i i
u, + Ai = ordp (Ai)

1 .
1

(ii). For 1 €1 put

x
I

a
i Ordpi(ET) ,

al
K, = log_ ( ) + n-log (e') - 3 wu,-log_ (p,)
p; 2/D P jer J p; ]
+ 3 c,-log

R )+ -1
jer p, "3 T Lo

(m.)
i jer j

g
Py

If h,-c, + k, = v, then
i 71 i i

h,-c, + k., = ord_ (K,)
i p, 1
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(ii'). For 1 € 1' put
. a’
Ki ordpi(a ) .,

’ = e - _ ) .
K; 1°gpi(z_fn) +n 1ogpi<s) 2 uj;-log, (py)
JGIU i

+ Yy e

‘log  (m.) + Y c.-lo
jer P, g

g (mi)
i jEI' J P: ]

j 1

If h,-c, + k! = vy, then
i 7i i i

h,-c. + k! = ord_ (K!)
i p; 1

Remark. Note that all the above pi—adic logarithms are well-defined, since
their arguments have pi—adic order zero. This follows from the fact that
I I and 1’ are disjunct, and if D = 1 (mod 8) from the choice
a = 2~a0

Proof. For (i), divide (7.10) by its second term. For (ii), divide (7.10) by
its second term, and add 1. For (ii'), divide (7.10) by its first term, and
subtract 1. Then, in all three cases, take the pi—adic order, and apply
(7.11). O

The linear forms in logarithms Ai’ Ki’ Ki , as they appear in Lemma 7.5,
seem to be inhomogeneous, since the first term has coefficient 1. However, it
can be made homogeneous by incorporating this first term in the other ones,
as follows. Put

h -1 2. h
= lem ( N 1o S)

Note that, by the definition of a ,

* h* b
n, n . 0

h ) St ioo M

a =1 ¢ . ﬂ w, ﬂ ! H p. -2 s (7.12)
. i, i . i

iel iel’ i=t+1

where the exponents ng for 0 < i < s are integral. It follows that

Put
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i i 0 j RS
Then it follows that
% % . .
Ai = n ~1og (—-) + ) c -log (;%) -3 log (;%)
Py jel J i’ jer’ J Py j

Further, note that the prime divisors of D are just the ramifying primes.

So, by (7.12),

* *
o h ,ni n,-v, h -(bo—uo)
G7p) ﬂ’f S LM ﬂ P; -2 ,
iel iel’ i=t+1
*
where v, - —-h ord (4D) € 7 for i = til, ..., s, and vy =1 if 2
i
splits, Vo = 0 otherwise. If P; ~ 2 splits we have assumed that b0 =1
Hence the last factor vanishes. So put
* * * * * *
K. =h K. , K@ =h K/, u, =h u, - (n, —v, ),
1 1 J J J
-1 1<i= 0
v R U {i] t+ i=s, v, # }

Then it follows that

* *
K, =n .1ogp (e - ¥, uj log (p )y + ) cJ log (nj) +
i JEI P jel

+ Z log (w.) ,

*
Ki = n*~log (e) - Z u log (p ) + z c log (m.) +
Py JGI P jel J Py J

*
+ 2 c.-log ()
jer J Pi J

This leads to the following reformulation of Lemma 7.5.

LEMMA 7.6. Let n, ¢. for ie€elI ul" , u, for 1€l be a solution of
1 1 * * x % *

(7.10), let \., k., k! be as in Lemma 7.5, and let h , A, K., Ki , n., c.,
i i i i i i i i

* *
u,, I be as above.
i U

i). i . .t AL, = .
(i) Let 1 € IU If ug kl 7 then

* *
u. + X, + ord (h ) = ord (A,)
i i 12 p; 1
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(ii). Let i€l . If h,.c, + k., 2 v, then
i i i i

* *
h.-c, + x. + ord (h ) = ord (K.)
i i i Py P i

(ii'). Let i e 1' . If h,-c., + k! =2 v, then
i i i i
* *
h,-c, + x! + ord (h ) = ord_ (K! )
i i i P p, i

* * *
Remark. We will study the linear forms in logarithms Ai’ Ki’ Ki for
* * *
arbitrary integral values of the variables n , Cir Yy oo Notice that the

parameter a has disappeared completely from these linear forms. This means
that we have to consider the linear forms for each D only, instead of for

each «a

7.5. Upper bounds for the solutions: outline.

Let us first give a global explanation of our application of the theory of
p—adic linear forms in logarithms, that gives explicit upper bounds for the
variables occurring in the linear forms Aj, Kj, Ki* . Then we give arguments
why we choose this way to apply the theory, and not other possible ways. In
the next section we give full details of the derivation of the upper bounds.
In the sequel, by the ’‘constants’ Cl, ey C12 we mean numbers that depend

only on the parameters of (7.10), not on the unknowns n, cgy Uy

Put
M= max (c¢.) , U=max (u,) , B=max ( M, U, |n| ) ,
. i . i
ieTul’ iel
U
* * * * * * * *
M = max (¢,) , U =max (u,) , B =max (M, U, [n}]| ),
. i .
ielul’ iel
U
N = max ( ]n0|, . |nt|, |nt+1—ut+1|, A ns—us| )
Then it follows that
* * X* N
X <h X+N, Xt T (7.13)
h

for X =M, U, B . We apply Lemma 2.6 to the p-adic linear forms in

*
logarithms. For Ai we find, in view of Lemma 7.6(i),
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U<+ C2-log(B*) , (7.14)

* *
and for Ki’ Ki we find, in view of Lemma 7.6(ii), (ii’'),

*
M < 03 + Ca-log(B ) . (7.15)
Here, Cl’ C2, C3, C4 are constants that can be written down explicitly. In
order to find an upper bound for B we try to find constants ClO’ C11 such
that
B <C C,,-log(B" 7.16
10 * Cyp-los(B ) . (7.16)

In view of (7.13) we may insert and delete asterisks any time we like, as
long as we don't specify the constants. In order to prove (7.16) it remains,

in view of (7.14) and (7.15), to bound |n| by a constant times 1log B . We

will introduce certain constants CS' C6’ C7 , and distinguish three cases:
(a).—(C6+C7-M)5n5C5,
(®). n>C, (7.17)

(c¢). n<~-( C6 + C7~M )

In case (a) it is, by (7.15), obvious that (7.16) holds. In cases (b) and (c)
one of the two terms of Ga dominates. We shall show that there exist
constants Cg’ C9 such that

In| < Cg + Cy-U . (7.18)

Then (7.16) follows from (7.14).

From (7.16) we derive immediately an explicit upper bound C12 for B ,
hence for all the variables involved. Since the constants Cl, e, CA will
be very large, also 012 will be very large. To find all solutions we

proceed by reducing this upper bound, by applying the computational p-adic
diophantine approximation technique described in Section 3.11, to the p-adic
linear forms in logarithms A:, Ki, Ki* . Crucial in that line of argument is
that the constants C ..., C are very small compared to Cl, ..., C

This method leads tosreduced 1ounds for the p-adic orders of the 1intar
forms. Then we can replace (7.14) and (7.15) by much sharper inequalities,
and repeat the above argument, to find a much sharper inequality for (7.16).
In general we expect that it is in this way possible to reduce in one step

the upper bound C for B to a reduced bound of size log C

12 12

Before going into detail we explain briefly that it is possible to treat
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(7.10) partly by the theory of real (instead of p-adic) linear forms in
logarithms, and subsequently by a real computational diophantine
approximation technique (cf. Section 3.7), and why we prefer not to do so.
First, note that Ki and K; have generically more terms than Ai , and are
therefore more complicated to handle. Since Ki’ Ki occur only in case (a),
this is the most difficult case. Equation (7.10) consist of three terms, each
of which is purely exponential, i.e. the bases are fixed and the exponents
are variable. If one of these three terms is essentially smaller than the
other two (more specifically, smaller than the other terms raised to the
power § , for a fixed & € (0,1) ), then we can apply the real method. There

are two ways of doing this. Write (7.10) as
x - x' = 2-u-/D

. 6
First, suppose that |[x-x'| < |x'| . Then |[n]| cannot be very large, and we
are essentially (i.e. apart from a finite domain) in case (a). Unfortunately,
the region for |n| that we can cover in this way becomes smaller as M -

(see the example below). Second, suppose that Ix| > |x’[1/6 , or Ix] <

|X’|6 . Then we are essentially in case (b) or (c). But this area can be
dealt with easier p-adically, since here we use the linear forms Ai

whereas the real linear forms in logarithms used in this case will
generically have more terms. The areas sketched above, in which we can apply
the real theory, will not cover the whole domain corresponding to case (a)
(cf. the white regions in Fig. 4 below). Hence we cannot avoid working with

the p-adic linear forms Ki’ Ki . But then it is more convenient to avoid the

use of real linear forms.

Let us illustrate the above reasoning with an example. Let a = a' = 1 ,
e=1+442 , m =1+2/2 ,s=1,1=1(1),p -7,1' =g, and 5=§
Then we have x = (1+/2)n-(1+2-/2)M . Fig. 4 below gives in the (n,M)-plane

2 ' ! ’ 1 ’ ’
the curves x = x'", 2-Ix'|, IX'I¥Ix" 1, Ix'|. Ix'1=/Ix" 1. S Ix'], SIx)
which are boundaries of the four regions A, B, C, D . We have the following
possibilities.

number of terms in linear form

region case (ess.) p—adic method real method
A (b), (¢) 2 3
B (b), (c) 2 -
C (a) 3 -
D (a) 3 2
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TR
=
¥

x = 2Ix'1

- i
= Ix'l
) 3 - 1
\\ \\\\
N -
x = /I x = 31x'l
L . 8
It can be reduced to €~|x | < x < Ix'| - Ix"|
but will never

The really hard part is C.

. 6 '
and {x'| + [x'| < x <c x|
disappear. So we cannot avoid the p-adic linear form in case

for any ¢ >1, 6§ € (0,1) ,

works in regions C and D together.

7.6. Upper bounds for the solutions: details.

We now proceed with filling in the details of the procedure

previous section.

We have

We apply Yu's lemma (Lemma 2.6) as follows.
d 2 For the «a, e/e', m,./m, , or €, €', p.
1 13 ]

we have
to compute the heights of these numbers. We have at once

h(p. 1 . if p. =23, h(2)=1,
(pJ) Og(pj) i pJ (2)

h(e) = h(e') %~10g(e) s
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' 1 r
h(wj) = h(nj) = ;-log[max(l,|1rj|)~max(1,|1rj|)] .

Further, let B8 = ¢ or B = "j . Then the leading coefficient of g/8' |is

a5 = |8-B'| . Hence

h(Gr) - 1og(1-4" | -max(1, |55 1) -max(L, 1571)

- log(max(|],18' 1)) .

Hence
P T,
(&) = log(e) | h<;§) = log(max(lxs .17 D) -

The order of the a; is important in two respects: it is required that the

Vi for i =1, ..., n-1 are in increasing order, and that ordp(bn) is
minimal among the ordp(bi) . Since the bi are the unknowns, we should
assume that Vn < V1 < ... = Vn—l . In the final bound however, only the

product Vl-...-Vn and Vn—l appear. So the ordering of the Vi only

matters for defining Vn—l . It follows that we can take

v, = max ( h(ai), fp-(log py/d ],

with the oy in any order, if we define

Vn—l =max ( 1, Vl’ e, Vn )
Further, we take
4 fp/d
B=B,=-B =B -max ( L B L I A A -1) )

Then 10g(1+%;-B) > fp-(log p)/d . By B =2 it follows that 1 + %H-B < B .

Hence we can take
W=1log B

There are two more conditions to be checked. The first one is that

b b
all-...-ann # 1 . This is immediate, if we assume the obvious condition that
not all bi are zero. The second one is [K(a}/q,...,ai/q):K] = qn , which

is less obvious. For our situation it follows from the following lemma.

LEMMA 7.7. Let K = Q(/D) , with ¢ as fundamental unit, and h as class

number. Let , +..y P be distinct prime numbers, and let P, be for
Py s i
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i=1, ..., s a prime ideal in K 1lying above P; - Let hi be a divisor
h,

of h such that pil is principal, and denote a generator by LIRS Let
either: (1) all Py split, and then
€ ﬁj
§0=€_’, §j=1r_( for i=1, ..., s,
J
or: (2)
= ¢ or €' , . =7, or = for j =1, ..., s
€0 €J j j 3
Let q be an odd prime, not dividing h . Then
1 1 s+l
(K(eg/9, .. 6/ K] = q
Proof. Let KO = K(éé/q) , and Ki = Ki_l(Ei/q) for i =1, ..., s . We use
induction on i to prove that [KS:K] = qs+1 . Note that [KO:K] = q
Suppose that [Ki:K] = ql+1 . It remains to prove that [Ki+1:Ki] = q , hence
it suffices to prove that Ei+l & Ki , since ¢ is prime. Suppose the
: . . . i+l .
contrary is true. Ki is a K-vector space of dimension g , with as
basis all the elements
i kj/q
T = ﬂ £.
Korooikg 503
for kj e (0, 1, ..., g-1 for j =0, ..., i . It follows that there
exist a, k. € K such that
0 i
1/q
£ = Y a T (7.19)
i+l k0’~ yki ko,. ,ki ko, .,kl

The group of K-embeddings of Ki into € is generated by the aj for
j=0, ..., 1 defined by

aﬂfyq)=§yq for L=0, ..., 1, L=3,
1/qy _ .l/q
Uj(fj ) p §j ,

where p is a primitive q th root of unity. Hence all the embeddings are

given by
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for Lj e {0,1, ..., g-1 } . It follows that

i Lj i km/q i ijj
® (r )= Mo (NNe " )= Mp? 7er
LO,...,Li kO""’ki =0 J o m =0 ko,. .,k1
i
T Lk,
_ pj=0 J J.T
ko,...,ki
The minimal polynomial of El/q over K is 3 - £ Hence the
i+1 i+l
conjugates of 51{% are pJ'ﬁii% for j =0, 1, ..., g-1 , all with equal
multiplicity. There exist numbers mj e ( 0, 1, ..., g-1 } such that for
j=0,1, ..., q-1 we have

vay " Va

Jk

L.) we find
i

i

i+l

q unknowns

o5 i+l
Hence
i
Y ijj
l/qy _ 3=0 1/q
C0 oo Baar) T Ein
0 i
Now apply o to (7.19). Then for each tuple ({.,...
’ LO""'Li 0
i i
Y ij. ¥ L.kj
j=03 3 1/q =077
, €1 DI k. "k
ko, ...k, 077" 0’
0 i
i+l - . .
Here we have a system of g linear equations in the
ay K The determinant of this system is exactly the square root of the

0Ky

i+l

discriminant of Ki over K , hence nonzero. Consequently there is in ¢

just one solution of the system. But we know that solution:

ay kT 0 if (ko,..,,k ) = (mo, ,m_)
0 i

R S L
o' oMy

The latter equation now yields an equation over K :

q : "
£, = a . ﬂ £.
i+l My, oo, my =0 j

In case (1) this leads to the ideal equation
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h, : m,-h
P i+l q i pj J o3
P =al | P ,
i+l j=11"3

and in case (2) to

<'>hi+1 q 1 (
i+l o Il

(where p( ) stands for p or p' ) for some fractional ideal a (note

that (50) = (1) ). Because of unique factorization for ideals it follows in

both cases that q divides all mj~hj for j =1, ..., i and hi+l . This
contradicts the assumption q | h . )
b1 b
Remarks. 1. I1f ord (o -...~an“—1) > 1/(p-1) then
bl bn
ordp(a1 Ceay -1) = ordp(bl-logp(a1)+...+bn~logp(an))

We prefer to work with the logarithmic version, since that is the one we use
in the computational method of reducing the upper bounds.

2. In order to apply Yu's lemma we can take for q the smallest odd prime
f
that does not divide h-p-(p p—1)

We now proceed to compute the constants C1 to C12 . To find C1 and C2
*

we apply Lemma 2.6 to Ai , for all 1i € IU . Then we find for each such i
constants Cl i 02 i such that, under the conditions

f 2

* P./
u, + A, = vy B = max ( 2 ﬁ~t -(p . -1) )
i i~ i 3071 i ’

*
(where ti denotes the number of terms in Ai ), we obtain

a wy<c C. .-log B
or p.(Ai) < .+ yi' og

1,i 2

i
By Lemma 7.6(i) and the relation ord)p - ep-ordp we see that, assuming the
conditions

f_ /2
* 4 Py
U 2 max (y,-A,) , B =max (2, 3.t -(p, -1) ) (7.20)
. i i . 371 i
iel iel

U U

it suffices to take
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C, = max [ —(Ai+ordp'(h*)) + Cl,i/ep. ] s 02 = max ( C2 i/e )

1 . . , P,
1EIU i i 1EIU i
Then (7.14) holds.
* *
Next we apply Lemma 2.6 to Ki and Ki , for all iel and I’
’
respectively, to obtain 03 and C4 . By X'’ we denote X if i eI,
and X' if 1 € I' . There exist by Lemma 2.6 constants C3 { and C4 i
such that under the conditions
fp /2
" * 4 i
hi.ci + Ko > 7o B = max ( 2, §~ti-(pi -1) ]
l)*

(where again ti denotes the number of terms of K; ), it follows that

' *
ordp (Ki ) < CB,i + CA,i-log B

Again, by Lemma 7.6(ii),(ii’') it follows that, under the conditions

() £ /2
YiT*y * 4 1
M > max f~—————J , B = max [ 2, 3-t.-(p. -1) ) (7.21)
. h, : 3 71 i
ieTul’ i ielul’
it suffices to take
" d h*
#g tord, (h) o c .
i 3,1 4,1
C, = max [ + J , C, = max ————-J
. h, h,-e . h,-e
ieIul’ i i pi ieTul’ i pi
Then (7.15) holds.
We take CS to C7 as follows:
C. = log(2- %]y /210 ¢, = log(2-|%]y/2:10
5 - og a g € ’ 6 - og a’ g €,
T wi
C, = ( Y log|—| + ¥ log|—| )/2-1og ¢
7 . T . .,
iel i iel’ i
Note that C5 or C6 may be negative, but that always —06 < C5 . Further,
C7 is always strictly positive, unless I = I’ = @ . Next we show how to
take C8 and C9 . Suppose first that
n > max ( CS’ 0)
Then, from e-¢' = #1 and the choice of T, we find by (7.8) that
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c
x!
i

”,
1

x,
1
pry

o,
1

n.n

iel

€
e’

X a
X_'sa—'.

which expresses that the first term of Ga dominates. Put

ier’

. i
1eIU
Then we infer
U Yy
o= Il p. 7= Ix=x"1/2:/D > |x|/4-/D
iel
U
la] n ¢ i _ja] n
= ce - ﬂ [, ﬂ jml > e,
4D iel i seT’ i 4/D
hence
n < ( 10g(?§%) + U-log(P) ]/log €

Next suppose that
n < min ( —(C6+C7-M), 0)

Then we find that the second term of Ga dominates, namely

., Cs c,
|X" ’a,| e ﬂ LIS H PR
X @ ¢ ie1|™i 1e1' |1
‘ ! L M -2 (n+C_-M)
a’ -2'n i i o’ 7
N AT = — - |2
o ier|"i| iert|Ti
.. 2-C
> |E_ ‘€ 6. 2
e 4
Put
L= [Imin (1, IS IDAE [l min (1, I 1)
iel iel’
Then we infer
U , , a'| In| e i
P2 |x=x'1/2:/D > |x'[/4/D = goptee 0 0] qmi ) T (1 g
iel iel’
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, c,

|a

Cc
P T minG, gar ) B mind, x|
. 1 . 1
iel iel’

—-(Inf-C.)/C
I 6 7

v

Pef—

a'| |n| FM jla’| |n|

. . > . .
WD € wh €
Hence

-C, /G 1/C
In) < [ 10g[?§2T~F 6 7) + U-log(P) ]/log(e-F 7)

The remaining possibilities in cases (b) and (c) are CS < n =<0 and

0 <n< —(C6+C7~M) < —C6 . So we may take, noting that T <1 ,
-C,/C 1/C
4y 4y'D 677 7

C8 = max [ log[Ta%g/log €, 1og(T;7T-F ]/log(e-r ], —CS, —C6 } s

1/c,
Cy = (log P)/log(e-T )

Then (7.18) holds in the cases (b) and (c) . Now take

C = max [ Cl, C

10 ¢

3 sl |c6;+c3-c7, Cg+Cy-Cy ),

€y =max (G, C,, C, Co, €, Cq )

Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold.

Hence, by Lemma 2.1, we infer the following result.

LEMMA 7.8. In the above notation,

* *
B <C B<C

12 12

hold unconditionally, where

* 2. (N4B™ n log(h"-C Y N
C12 = max -[ + ~Clo+ -Cll- og(h - 11)), Tax [ -(7i—Ai)+ ],
iel
U
[ f /2
% YR P.
max [h NN N), 2, max [é~t.-(p. + —1)) J R
. h, . 3 71 i
ielul’ i 1eIUI'UIU
C L C* N
12 = % (€0
h
Proof. <Clear. m]
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Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8.

2. In practice, almost always the first term in the max-definition of C

12
dominates. Moreover, the term N will in practice disappear in the rounding
off. Similarly, in the definitions of C10 and C11 , the dominating factors

are in practice C1 to Ca

7.7. The reduction technique.

* *
We now want to reduce the upper bound C12 for B (or C12 for B , which
is equivalent), to a much smaller upper bound. We do so using the p-adic
computational diophantine approximation technique described in Section 3.11.

* *
We perform this procedure for A = A,, K., Ki , for the relevant 1 . We

work in the p-adic approximation latéice; Fp themselves, and not in the
sublattices described in Section 3.13. The computational bottlenecks are the
computation of the p-adic logarithms to the desired precision, and the
application of the L3—A1gorithm. We refer to Chapter 3 for details. Once we
have found reduced bounds for ordp(A) for the above mentioned A, we

combine these bounds with Lemma 7.6 and with estimates (7.13), (7.17) and

*
(7.18) to find reduced bounds for B and B

*
When reduced upper bounds for B, B are found in this way, we may try the

*
c12‘ C12 replaced by their reduced analogons.

We may repeat the argument as long as improvement is still being made. But at

above procedure again, with

a certain stage, usually near to the actual largest solution, the procedure
will not yield any further improvement. Then we have to find all solutions by
some other method. One technique that may be useful is the algorithm of
Fincke and Pohst, described in Section 3.6. Another way is to search directly
for solutions of the original diophantine equation below the reduced bounds.
In our present equation this may well be done by employing congruence
arguments for finding all solutions of the second equation of system (7.9)

below the obtained bounds.

7.8. The standard example.

In this section we shall work out the procedure outlined above for our

standard example { Pyr oo P, }y = (2, 3, 5, 7 )} , thus proving Theorem
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7.2. In Tables II and III we give the necessary data on the fields K = Q(/D)

for the 15 values of D , and on the factorization of 2, 3,5, 7 in K .

Explanation of Tables II and III. For p; - 2, 3, 5, 7 we give in Table II a

generator of the ideal pi with ordp (pi) >0 if pi is a principal

i
ideal, and we give "pi" if it is not principal. In all the latter cases,
hi =2 , so pi = (ni) is principal. An asterisk (*) denotes a splitting

prime. Note that for each D at most one of the primes 2, 3, 5, 7 splits,

so t =<1 . In the final column of Table II we give for the splitting prime
h

p; a generator L of the ideal pil . In Table III, when vi and pj are

not principal, but pi~pj is, we give a generator of it.

From Tables II and III it is easy to find all possibilities for I, I’ and
a . We may assume I' = @ . In Table IV we give all possible 1, IU’ a (we
give primes Py instead of indices i ). An asterisk (*) appears when
(a) # (a') . The set IU is found by checking Ga (mod pi) for all 1

There are 54 cases with I = @ (the "symmetric" cases), and 54 cases with
I =g (the "asymmetric" cases). We start with the symmetric cases. This
incorporates all cases with D = 3, 5, 35, 42, 210 , when none of the primes

2, 3,5, 7 splits in Q(/D) . Now, t =20 , hence equation (7.10) becomes

u
a n a’ n i
= . — el =+
Ga(n) m € m € _.H pi . (722)
iel
U
With A =¢ + €' €Z , B=Ne=¢c-¢'" =*1 , we have for all neZ
Ga(n+2) = A~Ga(n+1) - B-Ga(n)
)
Since (a) = (a') , there is an n, € Z such that a' = *¢ ~.a . Hence

0
16, (ng=) | = [6_(n)]|

for all n € Z , which explains why we call these cases "symmetric". In this
situation we can apply elementary congruence arguments, as explained in

Section 4.5. We have the following result.
LEMMA 7.9, Let { Pys e P, }o= {2, 3, 5, 7 )} . Equation (7.1) with

conditions (7.2) and 1 = @ has exactly 91 solutions, that appear in Table

I marked with an asterisk (%*).
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Sketch of proof. 1In Table V we give the necessary data for these 54 cases.

We explain this table, and leave many details to the reader to check. For

each p =2, 3, 5, 7 we give Ll, n, ap, h2, . h7 . If for a p only
L. +1 Ll
Ll is given, then p ! Ga(n) for all ne€Z , and p | Ga(n) for at
least one ne€ Z . If n;, a; are given, then
L1+1
P | Ga(n) ® n=n (mod al)
Define n, = a; if n, = 0 , and n, = ng if ny » 0 . Then n, is the
€. +1
smallest positive index such that p | Ga(nz) . Now it is true that

Ga(nz) | Ga(n) whenever n = ny (mod al) s

This 1is related to symmetry properties of the recurrence sequence

(Ga(n)):=_m . For q = 2, 3, 5, 7 we have defined
hq - ordq(Ga(nz))

h2 h3 h5 h7 £, +1
Hence 2 ":3 7.5 7.7 | Ga(n) whenever p | Ga(n) . We have taken Ll

so large that always

2 3 5 7

Ga(n2) >2 73 7.5 7.7 . (7.23)

Consequently, there exists some prime r = 11 that divides Ga(nz) , hence
€,+1

r divides all Ga(n) with »p | Ga(n) . It follows that for a solution

of equation (7.22) we must have

ordp(Ga(n)) < Ll
In this way we find with ease all solutions of (7.22). O
Let us illustrate this with the example D =3 , o =3 . Then

1

1 n n
G (m) = 22+ + 2-2/H"

and Ga(—n) = Ga(n) . We have for Ga(n)
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n 0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15
Ga(n) 1 2 7 26 97 362 .... Ga(lé) = 50843527
mod 4 1 2 -1 2 1 2 -1 2 1 2 -1 2 1 2 -1 2
mod 3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
mod 5 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1
mod 49 1 2 7 -23 -1 19 -21 -5 1 9 -14 -16 -1 12 0 -12

We see that 22, 3, 5/} Ca(n) for all neZ , and 2 | Ga(n) if and only

if n odd . So p =7 is the only interesting case. We have 7 | Ga(n) if

and only if n = 2 (mod 4) |, 72 | Ga(n) if and only if n = 14 (mod 28) ,
(and in general

7K | 6 (n) & n= 2.7%1 (mod 4~7k‘1)
for k = 1 , and a similar relation holds for any symmetric recurrence and

any prime p for which arbitrary high powers of p occur in Ga(n) ). Now,

Ll = 0 does not lead to (7.23), since then n, = 2 , and Ga(2) = 7 , so that

no suitable r exists. But with Ll = 1 we have n, = 14 , and
. 2

h2 = h3 = h5 =0 , h7 = 2 , and (7.23) holds, since Ga(la) > 77 . Hence

there exists a prime r > 11 such that r | Ga(IA) , and thus r | Ga(n)

whenever 72 | Ca(n) . It follows that for solutions of (7.22) we have

Ga(n) < 21~30-50~71 = 14 , so that all solutions can be read from the above

table. Note that it is not necessary that r 1is known explicitly, only that

Ga(nz) is large enough. In our example, r = 337 or r = 3079 satisfy.

Finally we treat the remaining 54 cases, where I » @ . Then we need the

non-elementary reduction technique described in Sections 7.5 to 7.7.

In all our instances, the set 1 contains only one element, since there is
only one splitting prime. We denote by x the LA belonging to this prime,

and we write m for ¢ - Equation (7.10) now reads

u,

a_ n m _ af.e'n.",m 4 ﬂ j
2/D € 2/D =Py
jel
U
*
We computed the constants C1 to C12 s C12 , according to Section 7.6, for

each of the 54 cases. We omit the details of these computations, and simply
give the data in Table VI. In this table we give for each D the P; € IU

together with the v and Ai (it turns out that the Ai do not depend on
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the o , only on the Py ). The values "ne, n, n,, 0y, Ng, n, are the

integers such that

a =% e x 2 .07

It follows that in all cases we have C;z < 3.23x1030

The next step is to define the lattices, and find lower bounds for the
*
shortest nonzero vectors in the lattices. We start with treating the Ai , of

which there are 3 for each of the 10 D's . We have computed the 30 values of

pl[”'] tog, [ ']

] ]

such that it is a pi—adic integer, to the desired precision of u digits. We

mlm

toock p as follows:

P, b P
2 | 209 | 8.22x10%%
3 | 133 | 2.87x10%°
5 95 2.52)(1066
7 76 | 1.69x10°%
in order to have p? somewhat larger than the maximal Clg , being
1.05x1061 . We computed the 30 values of the 6(“)'5 but do not give them

here. The lattices F“ are generated by the column vectors of the matrices

1 0

19(/1) pu

We performed the p-adic continued fraction algorithm of Section 3.10 for each
of these 30 lattices. In the table below we give for each D the maximal
C;z (there is one for each o ), and the minimal bound for L(F“) (there is
one for each i e I ) that we found. We omit further details. In all
cases, L(F ) > /2- C . Hence Lemma 3.14 with n = 2, ¢y = 0, ¢y = 1 yields

*
ordpi(Ai) < u + By o ie IU s

where

. € ™
= min ( ord, (log, (7)), ordy (logpi(;T)) )

ko . . .
1 1 1
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*
D P kg C12 < L(F“) > U =<
2l 2.3 5] 1.5 1.0, 1.0 3.19x10%% g.26x10°° 210
6| 2.3, 7] 15 1.5 1.0 2.72x10%% 2.05x10°1 210
712, 5. 7] 20 1.0, 0.5 1.0x10°° 24310t 210
102, 5 7|15 05, 1.0 3.2220%° 2.22x0°" 210
w2 3 7|15 1.0 05 4.80x10°% 1.48x0°r 210
15 2.3 5| 3.5 1.5 0.5 2.15x10°% 1.55x10°1 212
210 2. 3, 7] 3.0 0.5 05 1.90x10°% 7.78x10°° 211
30 | 2,3, 5] 2.5 0.5 0.5 415028 1.37x10%Y 211
70 2.5 7] 2.5 0.5 0.5 3.23x10°%  2.51x10°1 211
105 | 3,5 7] 1.5 0.5 0.5 4.56x10%° 3.96x10°T 134
*
as given above. By ki + ord (h) > 0 we obtain from Lemma 7.6(i) upper
i
bounds for , 1 e I, hence the upper bounds for U , as given in the

table above.

u,
1

*
Next, we treat the Ki

where

From this table our choice for

*
K.

iel

u

, one for each D , having 5 terms, namely

*log (e') +m -log. (')
n *10 € m 10 ™ -
gp. gp.

1

SO .
pl

1

1

*
Y u.-log_ (p.) ,
<j<t Py ]
j=i

is the splitting prime. We have the following data.

YD (mod pi) becomes clear.

ord_ (log_ (-))

D P; YD (mod pi) pi Py
e n' 2 3 5 7
2 7 3 1 2 1 1 1 -
6 5 4 1 1 1 T - 2
7 3 1 1 1 1 - 1 1
10 3 2 1 1 T - 1 1
14 5 2 1 1 1 1 - 2
15 7 6 1 1 1 1 1 -
21 5 4 1 1 T 1r - 2
30 7 4 1 1 1 1 1 -
70 3 2 1 1 1 - 1 1
105 2 1 (mod 4) 2 4 - 2 2 3

166



It follows that ord (log (e€')) is always the least one of the five
i i
ordp 's 1in the above table. So we define:
i
lo ! lo (p.
gpi( ) gpi pJ) ' N
1= TEE;_??T7 ) 62’3’4 =~ Tog (1) (j € (1,2,3,4), j=i) ,

i pi

and we computed these numbers up to u digits, with pg as follows.

Py b Pg
2 539 1.80><10162
3 343 4.49x10163
s | 245 | 1.77x10t71
7 | 196 | 4.36x10™%°
so that p? is somewhat larger than the maximal Ci; . We computed the 40
values of the 6&7;’3,4 , but do not give them here. The lattices F# are

generated by the columns of the following matrices:

We computed the reduced bases of the 10 lattices by the L3—a1gorithm. Again,

we omit the computational details. We found data as follows.

D pinI m Ko Ciz < L(Fp) > M <
) 7 196 1 3.19x10%%  2.25x10%% 196
6 5 25 1 2.72x10%%  2.16x10%3 245
7 3 343 1 1.07x10°°  1.14x10%% 343
10 3 343 1 3.22x102%  1.07x10%%2 343
14 5 25 1 4.80x10%%  4.92x10%% 245
15 7 196 1 2.15x10%%  2.78x10%% 196
21 5 25 1 1.90x10%%  4.37x10%3 245
30 7 196 1 4.15x10%%  2.69x10%%2 196
70 3 343 1 3.23x10°0  1.03x10%% 343
105 2 539 2 4.54x102°  6.68x10°% 540
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, » SO that by Lemmas 3.14 and 7.6(ii) and

* *

i + ord (h ) >0 and hi > 1 we have M < ordp (Ki> < p + Bo o hence an
i i

upper bound for M as given in the table above.

*
In all instances, C(F“) > /S-C1

Finally, we compute the new, reduced bounds for |n| , and thus for B . This
we do by

+ C_ M, C

|n} < max [ CS’ C6 7 8

+CyU ) .

Hence we find data as in the following table.

* * *
Here we used B =<h B+ N and h = 2 . So in one step we have reduced
* *
the bound B < 3.23X1031 to B =< 1627 . The total computation time was
1715 sec, on average 0.7 sec for each 2-dimensional lattice, and 170 sec for

each 5-dimensional lattice.

D| G < C < €, < Cg< Cg< M= U< |n < B=< N=< B <
2 | 0.394 0.394 0.420 1.967 3.859 196 210 812 812 3 1627
6 | 0.152 0.652 0.190 1.345 1.631 245 210 343 343 3 689
7| 0.126 0.626 0.357 2.702 2.757 343 210 581 581 2 1164
10 | 0,601 0.191 0.181 1.396 2.337 343 210 492 492 3 987
14 | 0.102 0.602 0.325 1.861 1.508 245 210 318 318 3 639
15 | 0.540 0.668 0.257 1.394 1.649 196 212 350 350 2 702
21 | 0.222 0.722 0.142 1.564 2.386 245 211 505 505 1 1011
30 | 0.414 0.613 0.399 1.239 1.102 196 211 233 233 3 469
70 | ©.362 0.556 0.390 2.729 1.505 343 211 120 43 3 689
105 | 0.390 0.579 0.379 3.232 2.545 540 134 344 540 1 1081

*
We made a further reduction step, now using the reduced bound for B as

* *
12 We give the data for the Ai in the table
below. For u we took ByBy with By as above, and p, as below:

given above in stead of C

P j 2 3 5 7
By l 11 7 5 4
*
We found L(Fu) and bounds for U as given above. For the Ki we found,

with pu = By By with By o as above, and By as in the first table below,

the results given in the second table below.
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p | BY < /2-13* < u u < “W(r )= p.s <
1 m 0
2 | 1627 2301 2 22 1.82x10° 1. 23
6 689 975 3 33 3.99)(10[4 1. 34
7 1164 1647 3 33 4.50)(104 2 34
10 987 1396 3 33 5.91>(104 1. 34
14 639 904 3 33 2.58x104 1. 34
15 702 993 3 33 7.36X10A 3. 36
21 1011 1430 3 33 2.00)(10A 3 35
30 469 664 2 22 9.98x102 2. 24
70 | 689 975 3 33 5.76x10% 2. 35
105 1081 1529 3 21 3.89)(10[4 1. 22
p | B < /5B < 4 u= LT )= 4 M< [n B< B <
1 n 0
2 1627 3639 7 28 1.24x10h 1 28 90 90 183
6 689 1541 6 30 A.OQXIO3 1 30 145 145 293
7 1164 2603 7 49 l.O7x104 1 49 96 96 194
10 987 2207 7 49 1.16X104 1 49 80 80 163
14 639 1429 6 30 3,07)(103 1 30 53 53 109
15 702 1570 6 24 2.70)(103 1 24 60 60 122
21 1011 2261 6 30 3.88)(103 1 30 85 85 171
30 469 1049 6 24 2.50><103 1 24 27 27 57
70 689 1541 6 42 1.90XlO3 1 42 55 55 113
105 1081 2418 7 77 1.00><10A 2 78 59 78 157
The computation time was 15 sec. We made a third step, with for i
p | 8" < /2~B*< m us< LT)Y=z pu, < U=
1 n 0
2 183 258.9 2 22 1821 1.5 23
6 299 414 .4 2 22 875 1.5 23
7 194 274 .4 2 22 1285 2 23
10 163 230.6 2 22 634 1.5 23
14 109 154.2 2 22 268 1.5 23
15 122 172.6 2 22 873 3.5 25
21 171 241.9 2 22 818 3 25
30 57 80.7 2 22 998 2.5 24
70 113 159.9 2 22 585 2.5 24
105 157 222.1 2 14 281 1.5 15
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D |8 s /5B < u us LTy = wy s M

2 183 409.3 5 20 440 1 20

6 293 655.2 5 25 665 1 25

7 194 433.8 6 42 602 1 42
10 163 364.5 5 35 473 1 35
14 109 243.8 5 25 626 1 25
15 122 272.9 6 24 2700 1 24
21 171 382.4 5 25 645 1 25
30 57 127.5 4 16 129 1 16
70 113 252.7 5 35 366 1 35
105 157 351.1 5 55 354 2 56
and finally for |n| , and in more detail for ordp.(u) for i e IU

i

D | Mx u, < u, < ug = uy < In|] =<

2 20 23 14 10 0 90

6 25 23 15 0 8 38

7 42 23 0 10 8 66

10 35 23 0 10 8 55

14 25 23 14 0 8 36

15 24 25 15 10 0 42

21 25 24 14 0 8 61

30 16 24 14 10 0 27

70 35 24 0 10 8 65
105 56 0 14 10 8 41

Now we will not find any further improvement if we proceed in the same way.
But the upper bounds are now small enough to admit enumeration of the
remaining possibilities, making use of mod p arithmetic for p =2, 3, 5, 7

We did so, and found the remaining solutions, presented in Table I. We used

only 3 sec computer time for this last step.

This completes the proof of Theorem 7.2. ]

7.9. Tables.
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Table II.

D h ¢ Ne (31 ) 3 P, 5
2|1 1+/2 -1 72 3 5 1+2/2 1+2v/2
301 2+/3 1 1+/3 /3 5 7 -
511 %(1+/5) -1 2 3 /5 7 -
6| 1 s+2/6 1 247/6 3+/6 14/6" 7 14/6
7|1 8+3/7 1 3+/7 24/7" 5 /7 24/7

10 | 2 34/10 -1 Py pz* P 7 14/10

14 | 1 15+4/14 1 4+/14 3 3/14" 7+2/14 3+/14

15 | 2 4a/15 1 P, P, P pa* 8+/15

21 | 1 %(5+/21) 1 2 %(3+/21) %(1+/21)* %(7+/21> %(1+/21)

30 | 2 11+2/30 1 P, v, 54+/30 pa* 13+2/30

35 | 2 6+/35 1 ? 3 s 7, -

42 | 2 13+2/42 1 ? ?, 5 T+/42 -

70 | 2 251430/70 1 Py p," 25+3/70 P, 17+2/70
105 | 2 41+44105 1 pl* ?, 104+/105 ?, %(11+/105)
210 | 4 29+2/210 1 LN ’, ?, , -
Table II1.

D PP P73 PPy Py Py Py P, LERA
10 -2+/10 /10 - 5-/10 - -

15 3+/15 5+/15 1+/15 /15 6-/15 —542/15
30 6+/30 - —4+/30 - 3+/30 -

35 - 5+/35 7+/35 - - /35
42 6+/42 - - - - -

70 -8+/70 -~ 42+5/70 - 7+/70 -
105 %(—9+/105) - %<7+/105) - 21+2/105 -
210 - - 14+/210  15+/210 - -




Table IV,

D a I I D a I I D a 1 I
2 1 - 2357 14 4+/14 - 7 35 1 - 2357
1 7 235 L/14 5 7 /35 - 23
Y2 - 37 742414 - 2 5+/35 - 7
Y2 7 35 7+2/14 5 2 7+/35 - 5
3 1 - 2357 15 1 - 2357 42 1 - 2357
Y3 - 2 7 1 7 235 /42 - -
1+/3 - 3 /15 - 2 6+/42 - 57
3+/3 - 5 /15 702 7+/42 - 3
5 2 - 2357 3+/15 - 57 70 1 - 2357
2/5 - 237 3+/15 7 5 1 3 257
6 1 - 2357 5+/15 - 3 Y70 - -
1 5 237 5+/15 7 3 Y70 3 -
/6 - 57 14+/15° 7 35 2543/70 - 37
/6 5 7 154715 7 - 2543/70 3 7
2+/6 - 3 6—/15* 7 25 42+5/70 - 5
*
2+/6 5 3 -5+2Y15 7 23 42+5/70 3 5
3+/6 -~ - 21 2 2357 7+/70* 3 5
34/6 5 2 2 5 237 10+/70° 3 7
71 _ 2357 2/21 - 25 —8+/70" 3 57
1 3 257 221 5 2 35-4/70° 3 2
Y7 - 2 34+/21 - 2 7 [|105 2 2357
/7 3 25 3+/21 5 2 7 2 2 357
3+/7 - 7 7+/21 - 23 2/105 - 2
3+/7 3 57 7+/21 5 23 2/105 2 -
7+3/7 - 35 30 1 - 2357 20+2/105 - 23 7
7+3/7 3 5 1 7 235 2042/105 2 37
10 1 - 2357 /30 - - 42444105 - 25
1 3 257 /30 7 - 42+44/105 2 5
/10 - 37 5+/30 - 37 744105 2 35
/10 3 7 5+/30 7 3 154/105" 2 7
—2+/10% 3 57 64730 - 5 ~94/105% 2 57
5-/10° 3 2 7 6+/30 7 5 35-3/105° 2 3
14 1 - 2357 34/30% 7 5 210 1 - 2357
1 5 237 104/30° 7 3 J210 - -
/14 - 35 —4+/30% 7 35 144/210 - 35
/14 5 3 15-2/30° 7 2 154/210 - 7
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Table VI.

D p:,L Vi /\i (i€1;’)
21 235 300 1.5 0 0
6| 237 310 1.5 0.5 0
701 257 201 1 o 0.5
0| 257 310 1.5 0.5 0
wl| 237 301 1.5 0 0.5
15| 235 211 1 0.5 0.5
21 237 211 0 0.5 0.5
30| 235 311 1.5 0.5 0.5
70 257 311 1.5 0.5 0.5
05| 357 111 0.5 0.5 0.5
D a n n n, n, n. n I I* N K C*
e m 2 3577 U U 12
2 1 00 0000 235 235 3 0 3190x10°°
/2 001000 35 235 2 0 3.190x10°%
6 1 000000 237 237 3 0 2712x10%°
Y6 0 01 1 0 0 7 27 2 0 4.604x10%2
2+/6 101000 3 23 20 2.090x10%2
34/6 100100 2 2 3 30 2.090x10%?
7 1 000000 257 257 2 0 1.065x10°0
Y7 0 0 0 0 0 1 25 25 2 0 2.146x10%8
34+/7 101000 57 257 1 0 1.065x1o38
743/7 101001 5 25 1 0 2.146x10%°
10 1 000000 257 257 3 0 3.214x10°°
/10 001010 7 27 2 0 8.414x10%%
24/10 | -1 1 1 0 0 0 57 257 2 1 3.214x10%°
510 | -1 1 0 0 1 0 27 27 31 8.414x10%%
14 1 000000 237 237 3 0 4.791x10%°
/16 00100 1 3 23 20 4.347x10%2
414 101000 7 27 2 0 8.143x10%2
742/14 10000 1 2 2 3 0 8.371x10'8
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Table VI. (cont.)

D a n n n,n,nn n7 I N K C:z
15 1 000000 2 23 2 0 2.144x10°8
Y15 0 0 01 10 2 2 2 0 9.427x10"°
34/15 101100 5 25 1 0 1.69x10%%
54+/15 101010 3 2 3 1 0 1.035x10%%
1+/15 01 1 0 00 3 23 1 1 2.144x10%8
15+/15 01 1 1 10 2 1 1 9.427x10%°
6-/15 -1 1. 010 0 2 25 2 1 1.69%x10%%
542/15 | -1 1 0 0 1 0 2 23 2 1 1.035x10%%
21 2 002000 2 23 1 0 1.898x10%°
2/21 002101 2 2 0 0 2.640x108
34/21 102100 2 27 1 0 3.220x10%2
74/21 102001 2 23 1 0 1.435x10%2
30 1 000000 2 23 30 4.141x10°8
/30 001110 2 2 0 2.022x10%°
54/30 100010 3 23 3 0 2.217x10%"
6+/30 101100 5 25 2 0 3.276x10%%
3+/30 01 01 00 5 25 31 3.276x10%%
10+/30 o1 1010 3 23 2 1 2.217x10%%
4+/30 | -1 1 1 0 0 0 3 23 2 1 4.141x10%8
15-2/30 | -1 1 0 1 1 0 2 2 3 1 2.022x10%°
70 1 000000 2 25 30 3.229x10°°
/70 0010 1 1 2 2 0 2.115x10%t
254370 | 1 0 0 0 1 0 7 27 30 8.482x10%°
4245770 | 1 0 1 0 0 1 5 25 2 0 7.003x10%°
74/70 0100071 5 25 31 7.003x10%°
10+/70 o1 1010 7 27 2 1 8.482x10%°
8+/70 | -1 1 100 0 5 25 2 1 3.220x10°°
35-4/70 | -1 1 0 0 1 1 2 2 31 2.115x10%t
105 2 002000 3 35 1 0 4.533x10%°
2/105 002 1 1 1 0 0 4.295x10%°
2042/105 | 1 0 2 0 1 0 3 37 1 0 1.690x10%°
42444105 10 2 1 0 1 5 5 1 o0 8.655x10%°
74/105 | 0 1 2 0 0 1 3 35 1 1 1.396x10%°
15+/105| 0 1 2 1 1 0 7 7 1 1 1.049x10%}
94/105 | -1 1 2 1 0 0 5 57 1 1 2.485x10%°
35-3/105 | -1 1 2 0 1 1 3 3 1 1 5.880x10%°
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