CHAPTER 7. THE SUM OF TWO S-UNITS BEING A SQUARE. #### 7.1. Introduction. Let p_1, \ldots, p_s ($s \ge 1$) be distinct primes, and let S be the set of positive rational integers which have no prime divisors different from the p_i . A rational number is called an S-unit if its absolute value is a quotient of elements of S. Thus the set of S-units is $$\{\pm p_1^{x_1} \cdot \ldots \cdot p_s^{x_s} \mid x_i \in \mathbb{Z} \text{ for } i = 1, \ldots, s \}$$. We study the diophantine equation $$x + y = z^2$$ in x, y S-units, and $z\in\mathbb{Q}$, where the set of primes p_1,\ldots,p_s is given. We show how to find all solutions of this equation, using the theory of p-adic linear forms in logarithms, and a computational p-adic diophantine approximation method. We actually perform all the necessary computations for solving the equation completely for $\{p_1,\ldots,p_s\}=\{2,3,5,7\}$. We start with getting rid of the denominators. Let x, y, z be a solution. There is a $d \in S$ such that $|d \cdot x|$, $|d \cdot y| \in S$. Put $d = d_1 \cdot d_2^2$, where d_1 , $d_2 \in S$ and d_1 squarefree. Then $$d_1 \cdot d \cdot x + d_1 \cdot d \cdot y = (d_1 \cdot d_2 \cdot z)^2,$$ which has the same form as $x+y=z^2$, but now $\lfloor d_1\cdot d\cdot x \rfloor$, $\lfloor d_1\cdot d\cdot y \rfloor \in S \subset \mathbb{Z}$ and $d_1\cdot d_2\cdot z \in \mathbb{Z}$. Without loss of generality we may therefore study $$x + y = z^2 (7.1)$$ where $$\begin{cases} x \in S, & \pm y \in S, & z \in \mathbb{Z}, \\ x \ge y, & z > 0, \\ (x,y) & \text{is squarefree}. \end{cases}$$ (7.2) We shall prove the following results. THEOREM 7.1. Let p_1 , ..., p_s be given. There exists an effectively computable constant C, depending on p_1 , ..., p_s only, such that any solution x, y, z of equation (7.1) with conditions (7.2) satisfies $\max (x,|y|,z) < C$. THEOREM 7.2. Let { p_1 , ..., p_s } = { 2, 3, 5, 7 } . Equation (7.1) with conditions (7.2) has exactly the 388 solutions given in Table I. <u>Remarks.</u> 1. The Tables are given in Section 7.9. We stress that the aim of this chapter is not only to prove these theorems, but to show as well that for any given set of primes $\{p_1, \ldots, p_s\}$ a result similar to Theorem 7.2 can be proved along the same lines, in a more-or-less algorithmic way. 2. Equation (7.1) with conditions (7.2) can be seen as a further generalization of the generalized Ramanujan-Nagell equation $$x^2 + k = p_1^{n_1} \cdot \dots \cdot p_s^{n_s},$$ (7.3) (cf. Chapter 4), namely by taking $|\mathbf{k}| \in S$ arbitrary instead of $\mathbf{k} \in \mathbb{Z}$ fixed. The method of this chapter to solve (7.1) is also a generalization of the method of Chapter 4 to solve (7.3). Equation (7.1) can be transformed into a number of Pell-like equations. Put $$x = D \cdot u^2$$ where D, $u \in S$, and D is squarefree. There are only 2^S possibilities for D . Now, (7.1) is equivalent to a finite number of equations $$z^2 - D \cdot u^2 = y \tag{7.4}$$ in $u \in S$, $\pm y \in S$, $z \in \mathbb{Z}$, with z > 0 and (u,y) = 1. We treat equation (7.4) by factorizing its both sides in the field $K = \mathbb{Q}(\sqrt{D})$. When dealing with equation (7.4) we allow z and u to be negative. ### 7.2. The case D = 1. First we consider the special case D = 1. Then (7.4) is equivalent to $$\begin{cases} z + u = y_1 \\ z - u = y_2 \end{cases}$$ where $y=y_1\cdot y_2$, and $y_1\in S$, $\pm y_2\in S$, and $y_1>|y_2|$. Subtraction yields $$2 \cdot u = y_1 - y_2 , \qquad (7.5)$$ <u>LEMMA 7.3.</u> Let { p_1 , ..., p_s } = { 2, 3, 5, 7 } . Equation (7.1) with conditions (7.2) and D = 1 has exactly the 95 solutions given in Table I with D = 1 . <u>Proof.</u> From Theorem 6.3 it follows that a + b = c with a, b, $c \in S$, (a,b) = 1, $a \ge b$ has exactly 63 solutions, that are easy to compute. Each of these gives rise to three possibilities for (7.5): if 2 | a then $$(u,y_1,y_2) = (\frac{1}{2}a,b,c)$$, $(b,2c,2a)$, $(c,2a,-2b)$, if 2 | b then $(u,y_1,y_2) = (a,2b,2c)$, $(\frac{1}{2}b,c,a)$, $(c,2a,-2b)$, if 2 | c then $(u,y_1,y_2) = (a,2b,2c)$, $(b,2c,2a)$, $(\frac{1}{2}c,a,-b)$. Of the thus found 189 possibilities, the 95 ones given in Table I with D=1 satisfy $x \ge y$ and z > 0, whereas the others don't. This completes our treatment of the case D = 1. ## 7.3. Towards generalized recurrences. From now on, let D>1. Put $K=\mathbb{Q}(\sqrt{D})$. Let $\sigma:K\to K$ be the automorphism of K with $\sigma(\sqrt{D})=-\sqrt{D}$. For any number or ideal X in K we write X' for $\sigma(X)$, for convenience. Let \mathfrak{p}_i for $i=1,\ldots,s$ be the prime ideal in K such that $\operatorname{ord}_{\mathfrak{p}_i}(\mathfrak{p}_i)>0$. If \mathfrak{p}_i splits in \mathfrak{O}_K , this is well defined if a choice has been made from the two possibilities for \sqrt{D} (mod \mathfrak{p}_i). Put for a solution z, u, y of (7.4) $$\chi = z + u \cdot \sqrt{D}$$. Then $y = \chi \cdot \chi'$, and by (u,y) = 1 we have $$\min \left(\operatorname{ord}_{p_{i}}(u), \operatorname{ord}_{p_{i}}(y) \right) = 0.$$ (7.6) Equation (7.4) leads to the conjugated ideal equations $$\begin{cases} (\chi) = \prod_{i=1}^{s} \mathfrak{p}_{i}^{i} \cdot \mathfrak{p}_{i}^{b} \\ i=1 \end{cases}$$ $$(\chi') = \prod_{i=1}^{s} \mathfrak{p}_{i}^{a} \cdot \mathfrak{p}_{i}^{b} \\ i = 1 \end{cases}$$ $$(7.7)$$ where a_i , $b_i \in \mathbb{N}_0$, and $b_i = 0$ if $\mathfrak{p}_i = \mathfrak{p}_i'$. We need the following auxiliary lemma. <u>LEMMA 7.4.</u> If $\xi \in K$ and $\operatorname{ord}_p(\xi) = \operatorname{ord}_p(\xi')$ for a prime p, then $\operatorname{ord}_p(\xi) \leq \operatorname{ord}_p(\xi - \xi') \ .$ Moreover, if p = 2 and $D \equiv 1 \pmod{8}$, then $$\operatorname{ord}_{2}(\xi) \leq \operatorname{ord}_{2}((\xi-\xi')/2)$$, and, if p = 2 and $D \equiv 2$, $3 \pmod{4}$, then $$\operatorname{ord}_{2}(\xi) \leq \operatorname{ord}_{2}((\xi - \xi')/2 / D) + \frac{1}{2}$$. Proof. This is an easy exercise, which we leave to the reader. We distinguish, as usual, three cases for the factorization of the prime p_i in K: it may split, ramify or remain prime. See Borevich and Shafarevich [1966], section III.8. (i). p_i remains prime in K. Then $p_i \not \mid D$, and if $p_i = 2$ then $D \equiv 5 \pmod{8}$. We have $(p_i) = p_i = p_i'$, and from $\operatorname{ord}_{p_i}(\chi) = \operatorname{ord}_{p_i}(\chi')$ and Lemma 7.4 we obtain $$\operatorname{ord}_{p_{\mathbf{i}}}(y) = 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}(\chi) \leq 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}(\chi - \chi') = 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}(2 \cdot u \cdot / D) .$$ It follows, using (7.6), that if $$p_i \neq 2$$ then $ord_{p_i}(y) = 2 \cdot a_i = 0$, if $p_i = 2$ then $ord_2(y) = 2 \cdot a_i = 0$, 2, and if $a_i = 1$ then $ord_2(u) = 0$. (ii). p_i ramifies in K . Then $p_i \mid D$ if $p_i \neq 2$, and D = 2, 3 (mod 4) if $p_i = 2$. We have $(p_i) = p_i^2$, $p_i = p_i'$, and $ord_{p_i}(\chi) = ord_{p_i}(\chi') = \frac{1}{2} \cdot a_i$. From Lemma 7.4 we find $$\operatorname{ord}_{p_{\mathbf{i}}}(y) = 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}(\chi) \leq 1 + 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}((\chi - \chi')/2 \cdot \sqrt{D}) = 1 + 2 \cdot \operatorname{ord}_{p_{\mathbf{i}}}(u) .$$ By (7.6) we obtain $$\operatorname{ord}_{p_{\underline{i}}}(y) = a_{\underline{i}} = 0$$, 1 , and if $a_{\underline{i}} = 1$ then $\operatorname{ord}_{p_{\underline{i}}}(u) = 0$. (iii). p_i splits in K . Then $p_i \not D$, and if $p_i = 2$ then $D = 1 \pmod{8}$. We have $(p_i) = p_i \cdot p_i'$, $p_i \neq p_i'$. Further, $\operatorname{ord}_{p_i}(p_i) = 1$, $\operatorname{ord}_{p_i}(p_i') = 0$. Hence $\operatorname{ord}_{p_i}(\chi) = a_i$, $\operatorname{ord}_{p_i}(\chi') = b_i$. If $a_i = b_i$ then from $$\operatorname{ord}_{p_{i}}(y) = 2 \cdot \operatorname{ord}_{p_{i}}(\chi) \le 2 \cdot \operatorname{ord}_{p_{i}}((\chi - \chi')/2) = 2 \cdot \operatorname{ord}_{p_{i}}(u)$$ we obtain by (7.6) that $$ord_{p_{i}}(y) = a_{i} = b_{i} = 0$$. If $a_i \neq b_i$ then ord $p_i(y) = a_i + b_i > 0$, hence ord $p_i(u) = 0$, by (7.6). We infer in this case $$\operatorname{ord}_{p_{i}}(y) = a_{i} + b_{i} \ge 1 + 2 \cdot \min(a_{i}, b_{i}) = 1 + 2 \cdot \operatorname{ord}_{p_{i}}(\chi - \chi')$$ $$= 1 + 2 \cdot \operatorname{ord}_{p_{i}}(2) .$$ It follows that $$\begin{aligned} & \text{ord}_{p_{i}}(y) = \max(a_{i}, b_{i}) \text{ , } & \min(a_{i}, b_{i}) = 0 \text{ if } & p_{i} \neq 2 \text{ ,} \\ \\ & \text{ord}_{p_{i}}(y) = \max(a_{i}, b_{i}) + 1 \text{ , } & \min(a_{i}, b_{i}) = 1 \text{ if } & p_{i} = 2 \text{ .} \end{aligned}$$ Put $b_0 = \min(a_i, b_i)$ if $p_i = 2$ occurs, and $b_0 = 0$ otherwise. (Note that $\min(a_i, b_i) = 1$ may occur only if $p_i \neq p_i'$, hence only if $p_i = 2$ splits). Let us assume that the splitting primes of p_1, \ldots, p_s are p_1, \ldots, p_t for some $0 \le t \le s$. Put $$I = \{ i \mid 1 \le i \le t , a_{i} > b_{i} \} ,$$ $$I' = \{ i \mid 1 \le i \le t , a_{i} < b_{i} \} .$$ For $i=1,\ldots,t$, let h_i be the smallest positive integer such that \mathfrak{p}_i^h is a principal ideal, say $$\mathfrak{p}_{\mathbf{i}}^{\mathbf{h}} = (\pi_{\mathbf{i}}) .$$ If h denotes the class number of K , then h $_i$ | h . Now, $~\pi_{~i}$ \in K ~ is determined up to multiplication by a unit. Thus we may choose $~\pi_{~i}~$ such that $$\begin{split} |\pi_{\dot{1}}| &> |\pi'_{\dot{1}}| & \text{ if } \dot{1} \in I \ , \\ |\pi_{\dot{1}}| &< |\pi'_{\dot{1}}| & \text{ if } \dot{1} \in I' \ . \end{split}$$ For $i = 1, \ldots, t$, put $$| a_{i} - b_{i} | = c_{i} \cdot h_{i} + d_{i}$$ with $~\mathbf{c}_{\,i}^{}\,,~\mathbf{d}_{\,i}^{}\,\in\,\mathbb{N}_{\,0}^{}$, and $~\mathbf{0}\,\leq\,\mathbf{d}_{\,i}^{}\,\leq\,\mathbf{h}_{\,i}^{}\,-\,\mathbf{1}$. Consider the ideal $$\alpha = (2)^{b_0} \cdot \prod_{i \in I} \mathfrak{p}_i^{d_i} \cdot \prod_{i \in I} \mathfrak{p}_i^{d_i} \cdot \prod_{i=t+1}^{s}
\mathfrak{p}_i^{a_i}.$$ From the above considerations it follows that, for given $\,K$, $\,p_1,\,\ldots,\,p_s$, there are only finitely many possibilities for $\,\alpha$. By (7.7) it follows that $$(\chi) = \alpha \cdot \prod_{i \in I} (\pi_i)^{c_i} \cdot \prod_{i \in I'} (\pi'_i)^{c_i}$$ (namely, $|a_i - b_i| = \max(a_i, b_i)$ if $p_i \neq 2$, since then $\min(a_i, b_i) = 0$; and $|a_i-b_i| = \max(a_i,b_i) - 1$ if $p_i = 2$ and $b_0 = 1$). Hence q is a principal ideal, say $$a = (\alpha)$$ for an $\alpha\in \mathcal{O}_K^-$. Up to multiplication by a unit, there are only finitely many possibilities for α . Let ϵ be the fundamental unit of K with $\epsilon>1$. Now, (7.7) leads to the system of equations $$\begin{cases} \chi = z + u/D = \pm \alpha \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \\ \chi' = z - u/D = \pm \alpha' \cdot \epsilon'^{n} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \end{cases}, \qquad (7.8)$$ where $n\in\mathbb{Z}$. Put for $n\in\mathbb{Z}$, m_1 , ..., $m_t\in\mathbb{N}_0$, and for each possible α $$G_{\alpha}(n, m_{1}, \dots, m_{t}) = \frac{\alpha}{2\sqrt{D}} \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} - \frac{\alpha'}{2\sqrt{D}} \cdot \epsilon'^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I} \pi_{i}^{m_{i}},$$ $$H_{\alpha}(n, m_{1}, \dots, m_{t}) = \frac{\alpha}{2} \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I'} \pi_{i}^{m_{i}} + \frac{\alpha'}{2} \cdot \epsilon'^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I'} \pi_{i}^{m_{i}}.$$ Then (7.8) is equivalent to $$\begin{cases} \pm u = G_{\alpha}(n, c_1, \dots, c_t) \\ \pm z = H_{\alpha}(n, c_1, \dots, c_t) \end{cases}$$ (7.9) The functions $\,^G_{\alpha}\,$ and $\,^H_{\alpha}\,$ are generalized recurrences in the sense that if all variables but one are fixed, then they become integral binary recurrence sequences. ## 7.4. Towards linear forms in logarithms. Let us write $$u_i = \operatorname{ord}_{p_i}(u)$$ for $i = 1, \ldots, s$. Put for each α $$\begin{split} \mathbf{I}_{\mathbf{U}} &= \{ & i \ | \ 1 \leq i \leq s \ , \ \text{ord}_{\mathbf{p}_{\underline{i}}}(\mathbf{G}_{\alpha}(\mathbf{n},\mathbf{m}_{\underline{1}},\ldots,\mathbf{m}_{\underline{t}})) > 0 \quad \text{occurs} \\ & \text{for at least one } (\mathbf{n},\mathbf{m}_{\underline{1}},\ldots,\mathbf{m}_{\underline{t}}) \in \mathbb{Z} \times \mathbb{N}_{0}^{\mathbf{t}} \; \} \; . \end{split}$$ Note that since (u,y) = 1 the sets I_U , I, I' are disjunct. We proceed with the first equation of system (7.9). Written out in full detail it reads $$\frac{\alpha}{2\sqrt{D}} \cdot \epsilon^{\mathbf{n}} \cdot \prod_{\mathbf{i} \in \mathbf{I}} \pi_{\mathbf{i}}^{\mathbf{i}} \cdot \prod_{\mathbf{i} \in \mathbf{I}'} \pi_{\mathbf{i}}^{\prime}^{\mathbf{i}} - \frac{\alpha'}{2\sqrt{D}} \cdot \epsilon'^{\mathbf{n}} \cdot \prod_{\mathbf{i} \in \mathbf{I}} \pi_{\mathbf{i}}^{\prime}^{\mathbf{i}} \cdot \prod_{\mathbf{i} \in \mathbf{I}'} \pi_{\mathbf{i}}^{\mathbf{i}} = \pm \prod_{\mathbf{i} \in \mathbf{I}_{\mathbf{I}}} u_{\mathbf{i}}^{\mathbf{i}}.$$ (7.10) Now, I, I', I_U depend on α , which depends on the particular solution of equation (7.4) that we presupposed. However, we know that α belongs to a finite set, which can be computed explicitly. So if we can solve (7.10) completely for each α of this set, then we can find all solutions of (7.9), hence of (7.1). The set of the $\alpha's$ may be reduced, without loss of generality, as follows. If $D\equiv 1\pmod 8$ then $b_0=0,\ 1$ may both occur, with $\alpha=\alpha_0,\ 2\cdot\alpha_0$ respectively. We only have to consider $2\cdot\alpha_0$, because if $u=u_0,\ z=z_0$ is a solution of (7.9) for $\alpha=\alpha_0$, then $u=2\cdot u_0,\ z=2\cdot z_0$ is a solution of (7.9) for $\alpha=2\cdot\alpha_0$. Hence it is not necessary to consider $\alpha=\alpha_0$ if also $\alpha=2\cdot\alpha_0$ is already being considered. By the same argument, if $D\equiv 5\pmod 8$ then with $\alpha=\alpha_0$ such that $\operatorname{ord}_2(\alpha_0)=0$ also $\alpha=2\cdot\alpha_0$ may occur, so that we only have to consider the latter. Note that it may now occur that (u,y)=2. The condition (u,y)=1 is used only to ensure that I_U and $I\cup I'$ are disjunct. This remains true in the above cases with (u,y)=2. Further, if $(\alpha_0)\neq(\alpha_0')$ for some α_0 , then we only have to consider one α of the pair $\alpha_0,\ \alpha_0'$. Namely, by $\epsilon\cdot\epsilon'=\pm 1$ we have (we denote the I, I' belonging to α_0 by I_0 , I_0' , then the I, I' belonging to α_0' are I_0' , I_0) $$\begin{split} & = \frac{\alpha'_0}{2\sqrt{D}} \cdot \epsilon^{\mathbf{n}} \cdot \prod_{\mathbf{i}'} \pi_{\mathbf{i}}^{\mathbf{i}} \cdot \prod_{\mathbf{0}} \pi_$$ and analogously $$H_{\alpha_0'}(n, m_1, \dots, m_t) = \pm H_{\alpha_0}(-n, m_1, \dots, m_t)$$. From equation (7.10) we now derive p_i -adic linear forms in logarithms, in three different ways, according to $i \in I$, I' or I_{II} . Put $$\gamma_{i} = \frac{3}{2}$$ if $p_{i} = 2$, $\gamma_{i} = 1$ if $p_{i} = 3$, $\gamma_{i} = \frac{1}{2}$ if $p_{i} \ge 5$. Then $\gamma_i > 1/(p_i-1)$, hence if $\operatorname{ord}_{p_i}(\xi) \geq \gamma_i$ for a $\xi \in K$ then $$\operatorname{ord}_{p_{i}}(\log_{p_{i}}(1\pm\xi)) = \operatorname{ord}_{p_{i}}(\xi) . \tag{7.11}$$ We now have the following result. <u>LEMMA 7.5.</u> Let n, c_i ($i \in I \cup I'$) , u_i ($i \in I_U$) be a solution of (7.10). (i). For $i \in I_{U}$ put $$\lambda_{i} = \operatorname{ord}_{p_{i}}(2\sqrt{D/\alpha'})$$, $$\begin{split} \Lambda_{i} &= \log_{p_{i}}(\frac{\alpha}{\alpha'}) + n \cdot \log_{p_{i}}(\frac{\epsilon}{\epsilon'}) + \sum_{j \in I} c_{j} \cdot \log_{p_{i}}(\frac{\pi_{j}}{\pi_{j}'}) \\ &- \sum_{j \in I'} c_{j} \cdot \log_{p_{i}}(\frac{\pi_{j}}{\pi_{j}'}) \end{split}$$ If $u_i + \lambda_i \ge \gamma_i$ then $$u_i + \lambda_i = ord_{p_i}(\Lambda_i)$$. (ii). For $i \in I$ put $$\kappa_i = \operatorname{ord}_{p_i}(\frac{\alpha}{\alpha'})$$, $$\begin{split} \mathbf{K_i} &= \log_{\mathbf{p_i}}(\frac{\alpha'}{2\sqrt{D}}) + \mathbf{n} \cdot \log_{\mathbf{p_i}}(\epsilon') - \sum_{\mathbf{j} \in \mathbf{I_U}} \mathbf{u_j} \cdot \log_{\mathbf{p_i}}(\mathbf{p_j}) \\ &+ \sum_{\mathbf{j} \in \mathbf{I}} \mathbf{c_j} \cdot \log_{\mathbf{p_i}}(\pi'_{\mathbf{j}}) + \sum_{\mathbf{j} \in \mathbf{I}} \mathbf{c_j} \cdot \log_{\mathbf{p_i}}(\pi_{\mathbf{j}}) \end{split}.$$ If $h_i \cdot c_i + \kappa_i \ge \gamma_i$ then $$h_i \cdot c_i + \kappa_i = ord_{p_i}(K_i)$$. (ii'). For $i \in I'$ put $$\kappa_{i}' = \operatorname{ord}_{p_{i}}(\frac{\alpha'}{\alpha})$$, $$\begin{split} \mathbf{K_i'} &= \log_{\mathbf{p_i}}(\frac{\alpha}{2\sqrt{D}}) + n \cdot \log_{\mathbf{p_i}}(\epsilon) - \sum_{\mathbf{j} \in \mathbf{I_U}} \mathbf{u_j} \cdot \log_{\mathbf{p_i}}(\mathbf{p_j}) \\ &+ \sum_{\mathbf{j} \in \mathbf{I}} \mathbf{c_j} \cdot \log_{\mathbf{p_i}}(\pi_j) + \sum_{\mathbf{j} \in \mathbf{I_j'}} \mathbf{c_j} \cdot \log_{\mathbf{p_i}}(\pi_j') \end{split}.$$ If $h_i \cdot c_i + \kappa'_i \ge \gamma_i$ then $$h_i \cdot c_i + \kappa'_i = ord_{p_i}(K'_i)$$. <u>Remark.</u> Note that all the above p_i -adic logarithms are well-defined, since their arguments have p_i -adic order zero. This follows from the fact that I_U , I and I' are disjunct, and if $D \equiv 1 \pmod 8$ from the choice $\alpha = 2 \cdot \alpha_0$. <u>Proof.</u> For (i), divide (7.10) by its second term. For (ii), divide (7.10) by its second term, and add 1. For (ii'), divide (7.10) by its first term, and subtract 1. Then, in all three cases, take the p_i -adic order, and apply (7.11). The linear forms in logarithms Λ_i , K_i , K_i' , as they appear in Lemma 7.5, seem to be inhomogeneous, since the first term has coefficient 1. However, it can be made homogeneous by incorporating this first term in the other ones, as follows. Put $$h^* = 1cm (2, h_1, ..., h_s)$$. Note that, by the definition of α , $$\alpha^{h^{*}} = \pm \epsilon^{n_{0}} \cdot \prod_{i \in I}^{n_{i}} \pi_{i}^{i} \cdot \prod_{i \in I'}^{n_{i}} \pi_{i}^{i} \cdot \prod_{i = t+1}^{s} p_{i}^{i} \cdot 2 \qquad (7.12)$$ where the exponents n_i for $0 \le i \le s$ are integral. It follows that $$\left(\frac{\alpha}{\alpha'}\right)^{h^*} = \pm \left(\frac{\epsilon}{\epsilon'}\right)^{n_0} \cdot \prod_{i \in I} \left(\frac{\pi}{\pi'}\right)^{n_i} \cdot \prod_{i \in I'} \left(\frac{\pi'}{\pi}\right)^{n_i}.$$ Put $$\Lambda_{i}^{*} = h^{*} \cdot \Lambda_{i}$$, $n^{*} = h^{*} \cdot n + n_{0}$, $c_{j}^{*} = h^{*} \cdot c_{j} + n_{j}$. Then it follows that $$\Lambda_{i}^{*} = n^{*} \cdot \log_{p_{i}}(\frac{\epsilon}{\epsilon'}) + \sum_{j \in I} c_{j}^{*} \cdot \log_{p_{i}}(\frac{\pi_{j}}{\pi'_{j}}) - \sum_{j \in I'} c_{j}^{*} \cdot \log_{p_{i}}(\frac{\pi_{j}}{\pi'_{j}}) .$$ Further, note that the prime divisors of $\, D \,$ are just the ramifying primes. So, by (7.12), $$\left(\frac{\alpha}{2\sqrt{D}}\right)^{h^{*}} = \pm \epsilon^{n_{0}} \cdot \prod_{i \in I}^{n_{i}} \pi_{i}^{i} \cdot \prod_{i \in I}^{n_{i}} \pi_{i}^{i} \cdot \prod_{i = t+1}^{s} p_{i}^{n_{i}-\nu_{i}} \cdot 2^{h^{*} \cdot (b_{0}-\nu_{0})},$$ where $\nu_i=\frac{1}{2}\cdot h^*\cdot \operatorname{ord}_{P_i}$ (4D) $\in \mathbb{Z}$ for $i=t+1,\ldots,s$, and $\nu_0=1$ if 2 splits, $\nu_0=0$ otherwise. If $p_i=2$ splits we have assumed that $b_0=1$. Hence the last factor vanishes. So put $$\begin{split} & K_{i}^{*} = h^{*} \cdot K_{i} \ , \quad {K_{i}^{'}}^{*} = h^{*} \cdot K_{i}^{'} \ , \quad u_{j}^{*} = h^{*} \cdot u_{j}^{} - (n_{j}^{} - \nu_{j}^{}) \ , \\ & I_{U}^{*} = I_{U}^{} \cup \{i \mid t+1 \leq i \leq s \ , \quad \nu_{i}^{} \neq 0 \} \ . \end{split}$$ Then it follows that $$\begin{split} K_{i}^{*} &= n^{*} \cdot \log_{p_{i}}(\epsilon') - \sum_{j \in I_{U}}
u_{j}^{*} \cdot \log_{p_{i}}(p_{j}) + \sum_{j \in I} c_{j}^{*} \cdot \log_{p_{i}}(\pi'_{j}) + \\ &+ \sum_{j \in I'} c_{j}^{*} \cdot \log_{p_{i}}(\pi_{j}) , \\ K_{i}^{*} &= n^{*} \cdot \log_{p_{i}}(\epsilon) - \sum_{j \in I_{U}} u_{j}^{*} \cdot \log_{p_{i}}(p_{j}) + \sum_{j \in I} c_{j}^{*} \cdot \log_{p_{i}}(\pi_{j}) + \\ &+ \sum_{j \in I'} c_{j}^{*} \cdot \log_{p_{i}}(\pi'_{j}) . \end{split}$$ This leads to the following reformulation of Lemma 7.5. (i). Let $$i \in I_U$$. If $u_i + \lambda_i \ge \gamma_i$ then $$u_i + \lambda_i + ord_{p_i}(h^*) = ord_{p_i}(\Lambda_i^*)$$. (ii). Let $$i \in I$$. If $h_i \cdot c_i + \kappa_i \ge \gamma_i$ then $$h_i \cdot c_i + \kappa_i + \operatorname{ord}_{p_i}(h^*) = \operatorname{ord}_{p_i}(K_i^*).$$ (ii'). Let $i \in I'$. If $h_i \cdot c_i + \kappa_i' \ge \gamma_i$ then $$h_i \cdot c_i + \kappa_i' + \operatorname{ord}_{p_i}(h^*) = \operatorname{ord}_{p_i}(K_i^{'*}).$$ Remark. We will study the linear forms in logarithms Λ_i^* , K_i^* , K_i^* for arbitrary integral values of the variables n^* , c_i^* , u_i^* . Notice that the parameter α has disappeared completely from these linear forms. This means that we have to consider the linear forms for each D only, instead of for each α ## 7.5. Upper bounds for the solutions: outline. Let us first give a global explanation of our application of the theory of p-adic linear forms in logarithms, that gives explicit upper bounds for the variables occurring in the linear forms Λ_{i}^{*} , K_{i}^{*} , K_{i}^{*} . Then we give arguments why we choose this way to apply the theory, and not other possible ways. In the next section we give full details of the derivation of the upper bounds. In the sequel, by the 'constants' C_{1} , ..., C_{12} we mean numbers that depend only on the parameters of (7.10), not on the unknowns n, c_{i} , u_{i} . Put $$\begin{split} \mathbf{M} &= \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} (\mathbf{c_i}) \;, \quad \mathbf{U} &= \max_{\mathbf{i} \in \mathbf{I}_{\mathbf{U}}} (\mathbf{u_i}) \;, \quad \mathbf{B} &= \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} (\mathbf{M}, \; \mathbf{U}, \; |\mathbf{n}| \;) \;, \\ \\ \mathbf{M}^* &= \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} (\mathbf{c_i^*}) \;, \quad \mathbf{U}^* &= \max_{\mathbf{i} \in \mathbf{I}_{\mathbf{U}}} (\mathbf{u_i^*}) \;, \quad \mathbf{B}^* &= \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} (\; \mathbf{M}^*, \; \mathbf{U}^*, \; |\mathbf{n}^*| \;) \;, \\ \\ \mathbf{N} &= \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} (\; |\mathbf{n_0}| \;, \; \dots, \; |\mathbf{n_t}| \;, \; |\mathbf{n_{t+1}} - \nu_{t+1}| \;, \; \dots, \; |\mathbf{n_s} - \nu_s| \;) \;. \end{split}$$ Then it follows that $$X^* \le h^* \cdot X + N$$, $X \le \frac{X^* + N}{h^*}$ (7.13) for X = M, U, B . We apply Lemma 2.6 to the p-adic linear forms in logarithms. For Λ_i^* we find, in view of Lemma 7.6(i), $$U < C_1 + C_2 \cdot \log(B^*)$$, (7.14) and for K_i^* , $K_i^{\prime *}$ we find, in view of Lemma 7.6(ii),(ii'), $$M < C_3 + C_4 \cdot \log(B^*)$$ (7.15) Here, $\rm C_1$, $\rm C_2$, $\rm C_3$, $\rm C_4$ are constants that can be written down explicitly. In order to find an upper bound for B we try to find constants $\rm C_{10}$, $\rm C_{11}$ such that $$B < C_{10} + C_{11} \cdot \log(B^*)$$ (7.16) In view of (7.13) we may insert and delete asterisks any time we like, as long as we don't specify the constants. In order to prove (7.16) it remains, in view of (7.14) and (7.15), to bound $|\mathbf{n}|$ by a constant times $\log B$. We will introduce certain constants C_5 , C_6 , C_7 , and distinguish three cases: (a). $$- (C_6 + C_7 \cdot M) \le n \le C_5$$, (b). $$n > C_5$$, (7.17) (c). $$n < - (C_6 + C_7 \cdot M)$$. In case (a) it is, by (7.15), obvious that (7.16) holds. In cases (b) and (c) one of the two terms of G_{α} dominates. We shall show that there exist constants C_8 , C_9 such that $$|n| < C_8 + C_9 \cdot U$$ (7.18) Then (7.16) follows from (7.14). From (7.16) we derive immediately an explicit upper bound C_{12} for B , hence for all the variables involved. Since the constants C_1 , ..., C_4 will be very large, also C_{12} will be very large. To find all solutions we proceed by reducing this upper bound, by applying the computational p-adic diophantine approximation technique described in Section 3.11, to the p-adic linear forms in logarithms $\Lambda_{\bf i}^*$, $K_{\bf i}^*$. Crucial in that line of argument is that the constants C_5 , ..., C_9 are very small compared to C_1 , ..., C_4 . This method leads to reduced bounds for the p-adic orders of the linear forms. Then we can replace (7.14) and (7.15) by much sharper inequalities, and repeat the above argument, to find a much sharper inequality for (7.16). In general we expect that it is in this way possible to reduce in one step the upper bound C_{12} for B to a reduced bound of size $\log C_{12}$. Before going into detail we explain briefly that it is possible to treat (7.10) partly by the theory of real (instead of p-adic) linear forms in logarithms, and subsequently by a real computational diophantine approximation technique (cf. Section 3.7), and why we prefer not to do so. First, note that \mathbf{K}_i and \mathbf{K}_i' have generically more terms than $\mathbf{\Lambda}_i$, and are therefore more complicated to handle. Since \mathbf{K}_i , \mathbf{K}_i' occur only in case (a), this is the most difficult case. Equation (7.10) consist of three terms, each of which is purely exponential, i.e. the bases are fixed and the exponents are variable. If one of these three terms is essentially smaller than the other two (more specifically, smaller than the other terms raised to the power δ , for a fixed $\delta \in (0,1)$), then we can apply the real method. There are two ways of doing this. Write (7.10) as $$\chi - \chi' = 2 \cdot \mathbf{u} \cdot \sqrt{D}$$. First, suppose that $|\chi-\chi'|<|\chi'|^\delta$. Then |n| cannot be very large, and we are essentially (i.e. apart from a finite domain) in case (a). Unfortunately, the region for |n| that we can cover in this way becomes smaller as $M\to\infty$ (see the example below). Second, suppose that $|\chi|>|\chi'|^{1/\delta}$, or $|\chi|<|\chi'|^\delta$. Then we are essentially in case (b) or (c). But this area can be dealt with easier p-adically, since here we use the linear forms Λ_i , whereas the real linear forms in logarithms used in this case will generically have more terms. The areas sketched above, in which we can apply the real theory, will not cover the whole domain corresponding to case (a) (cf. the white regions in Fig. 4 below). Hence we cannot avoid working with the p-adic linear forms K_i , K_i' . But then it is more convenient to avoid the use of real linear forms. Let us illustrate the above reasoning with an example. Let $\alpha=\alpha'=1$, $\epsilon=1+\sqrt{2}$, $\pi_1=1+2\cdot\sqrt{2}$, s=1, $I=\{1\}$, $p_1=7$, $I'=\emptyset$, and $\delta=\frac{1}{2}$. Then we have $\chi=(1+\sqrt{2})^n\cdot(1+2\cdot\sqrt{2})^M$. Fig. 4 below gives in the (n,M)-plane the curves $\chi=\chi'^2$, $2\cdot|\chi'|$, $|\chi'|+\sqrt{|\chi'|}$, $|\chi'|$, $|\chi'|-\sqrt{|\chi'|}$, $\frac{1}{2}\cdot|\chi'|$, $\sqrt{|\chi'|}$, which are boundaries of the four regions A, B, C, D. We have the following possibilities. | | 1 | number of terms | in linear form | |--------|-------------|-----------------|----------------| | region | case (ess.) | p-adic method | real method | | A | (b),(c) | 2 | 3 | | В | (b),(c) | 2 | _ | | С | (a) | 3 | _ | | D | (a) | 3 | 2 | ## Figure 4. The really hard part is C. It can be reduced to $\frac{1}{c} \cdot |\chi'| < \chi < |\chi'| - |\chi'|^{\delta}$ and $|\chi'| + |\chi'|^{\delta} < \chi < c \cdot |\chi'|$ for any c > 1, $\delta \in (0,1)$, but will never disappear. So we cannot avoid the p-adic linear form in case (a), which then works in regions C and D together. # 7.6. Upper bounds for the solutions: details. We now proceed with filling in the details of the procedure outlined in the previous section. We apply Yu's lemma (Lemma 2.6) as follows. We have $L=K=\mathbb{Q}(\sqrt{D})$, so d=2. For the α_i we have ϵ/ϵ' , π_j/π_j' , or ϵ , ϵ' , p_j , π_j , π_j' . We have to compute the heights of these numbers. We have at once $$\begin{split} h(p_j) &= \log(p_j) \quad \text{if} \quad p_j \geq 3 \ , \quad h(2) = 1 \ , \\ h(\epsilon) &= h(\epsilon') = \frac{1}{2} \cdot \log(\epsilon) \ , \end{split}$$ $$h(\pi_j) = h(\pi'_j) = \frac{1}{2} \cdot \log \left(\max(1, |\pi_j|) \cdot \max(1, |\pi'_j|) \right) .$$ Further, let $\beta=\epsilon$ or $\beta=\pi_j$. Then the leading coefficient of β/β' is $a_0=|\beta\cdot\beta'|$. Hence $$\begin{split} h(\frac{\beta}{\beta'}) &= \frac{1}{2} log(|\beta \cdot \beta'| \cdot max(1, |\frac{\beta}{\beta'}|) \cdot max(1, |\frac{\beta'}{\beta}|)) \\ &= log(max(|\beta|, |\beta'|)) . \end{split}$$ Hence $$h(\frac{\epsilon}{\epsilon'}) = \log(\epsilon)$$, $h(\frac{\pi_j}{\pi'_j}) = \log(\max(|\pi_j|, |\pi'_j|))$. The order of the α_i is important in two respects: it is required that the V for $i=1,\,\ldots,\,n-1$ are in increasing order, and that $\operatorname{ord}_p(b_n)$ is minimal among the $\operatorname{ord}_p(b_i)$. Since the b_i are the unknowns, we should assume that $V_n \leq V_1 \leq \ldots \leq V_{n-1}$. In the final bound however, only the product $V_1 \cdot \ldots \cdot V_n$ and V_{n-1}^+ appear. So the ordering of the V_i only matters for defining V_{n-1}^+ . It follows that we can take $$V_i = \max (h(\alpha_i), f_p \cdot (\log p)/d)$$, with the α_i in any order, if we define $$V_{n-1}^+ = \max (1, V_1, ..., V_n)$$. Further, we take $$B = B_0 = B_n = B' = \max \left(|b_1|, \dots, |b_n|, 2, \frac{4}{3} \cdot n \cdot (p^{-1}) \right)$$. Then
$\log(1+\frac{3}{4n}\cdot B)\geq f_p\cdot (\log\ p)/d$. By $B\geq 2$ it follows that $1+\frac{3}{4n}\cdot B< B$. Hence we can take $$W = log B$$. There are two more conditions to be checked. The first one is that $\alpha_1^{b_1} \cdot \ldots \cdot \alpha_n^{n_n} \neq 1$. This is immediate, if we assume the obvious condition that not all b_i are zero. The second one is $[K(\alpha_1^{1/q},\ldots,\alpha_n^{1/q}):K]=q^n$, which is less obvious. For our situation it follows from the following lemma. <u>LEMMA 7.7.</u> Let $K = \mathbb{Q}(\sqrt{D})$, with ϵ as fundamental unit, and h as class number. Let p_1, \ldots, p_s be distinct prime numbers, and let p_i be for $i=1,\ \dots,\ s$ a prime ideal in K lying above p_i . Let h_i be a divisor of h such that p_i is principal, and denote a generator by π_i . Let either: (1) all p_i split, and then $$\xi_0 = \frac{\epsilon}{\epsilon'}$$, $\xi_j = \frac{\pi_j}{\pi'_j}$ for $i = 1, \ldots, s$, or: (2) $$\xi_0 = \epsilon$$ or ϵ' , $\xi_j = \pi_j$ or π'_j for $j = 1, \ldots, s$. Let q be an odd prime, not dividing h . Then $$[K(\xi_0^{1/q}, \dots, \xi_s^{1/q}) : K] = q^{s+1}$$. <u>Proof.</u> Let $K_0 = K(\xi_0^{1/q})$, and $K_i = K_{i-1}(\xi_i^{1/q})$ for $i=1,\ldots,s$. We use induction on i to prove that $[K_s:K] = q^{s+1}$. Note that $[K_0:K] = q$. Suppose that $[K_i:K] = q^{i+1}$. It remains to prove that $[K_{i+1}:K_i] = q$, hence it suffices to prove that $\xi_{i+1} \notin K_i$, since q is prime. Suppose the contrary is true. K_i is a K-vector space of dimension q^{i+1} , with as basis all the elements $$r_{k_0,\ldots,k_i} = \prod_{j=0}^{i} \xi_j^{k_j/q}$$ for $k_j \in \{\ 0,\ 1,\ \dots,\ q-1\ \}$ for $j=0,\ \dots,\ i$. It follows that there exist $a_{k_0},\dots,k_i \in K$ such that $$\xi_{i+1}^{1/q} = \sum_{k_0, \dots, k_i} a_{k_0, \dots, k_i} r_{k_0, \dots, k_i}$$ (7.19) The group of K-embeddings of K into C is generated by the σ_j for j = 0, ..., i defined by $$\begin{split} &\sigma_{\mathbf{j}}(\boldsymbol{\xi}_{\ell}^{1/q}) = \boldsymbol{\xi}_{\ell}^{1/q} \quad \text{for} \quad \ell = 0, \dots, \ \mathbf{i} \ , \quad \ell \neq \mathbf{j} \ , \\ &\sigma_{\mathbf{j}}(\boldsymbol{\xi}_{\mathbf{j}}^{1/q}) = \rho \cdot \boldsymbol{\xi}_{\mathbf{j}}^{1/q} \ , \end{split}$$ where ho is a primitive q th root of unity. Hence all the embeddings are given by $$\varphi_{\ell_0,\ldots,\ell_i} = \prod_{j=0}^{i} \sigma_j^{\ell_j}$$ for $\ell_j \in \{0, 1, \ldots, q-1\}$. It follows that $$\varphi_{\boldsymbol{\ell}_{0},\ldots,\boldsymbol{\ell}_{i}}(\boldsymbol{\tau}_{k_{0},\ldots,k_{i}}) = \prod_{j=0}^{i} \sigma_{j}^{\boldsymbol{\ell}_{j}} (\prod_{m=0}^{i} \boldsymbol{\xi}_{m}^{k_{m}/q}) = \prod_{j=0}^{i} \rho_{j}^{\boldsymbol{\ell}_{j}k_{j}} \cdot \boldsymbol{\tau}_{k_{0},\ldots,k_{i}}$$ $$= \rho^{j=0} \cdot \boldsymbol{\tau}_{k_{0},\ldots,k_{i}}.$$ The minimal polynomial of $\xi_{i+1}^{1/q}$ over K is $X^q - \xi_{i+1}$. Hence the conjugates of $\xi_{i+1}^{1/q}$ are $\rho^j \cdot \xi_{i+1}^{1/q}$ for $j=0,\,1,\,\ldots,\,q-1$, all with equal multiplicity. There exist numbers $m_j \in \{\ 0,\,1,\,\ldots,\,q-1\ \}$ such that for $j=0,\,1,\,\ldots,\,q-1$ we have $$\sigma_{j}(\xi_{i+1}^{1/q}) = \rho^{m_{j}} \cdot \xi_{i+1}^{1/q}$$. Hence $$\varphi_{\boldsymbol{\ell}_0,\ldots,\boldsymbol{\ell}_i}(\xi_{i+1}^{1/q}) = \rho^{\sum\limits_{j=0}^{i}\boldsymbol{\ell}_j^{m_j}} \cdot \xi_{i+1}^{1/q} \ .$$ Now apply φ_{t_0,\ldots,t_i} to (7.19). Then for each tuple (t_0,\ldots,t_i) we find Here we have a system of q^{i+1} linear equations in the q^{i+1} unknowns a_{k_0,\ldots,k_i} . The determinant of this system is exactly the square root of the discriminant of K_i over K, hence nonzero. Consequently there is in $\mathbb{C}^{q^{i+1}}$ just one solution of the system. But we know that solution: $$a_{k_0, \dots, k_i} = 0 \quad \text{if} \quad (k_0, \dots, k_i) \neq (m_0, \dots, m_i) ,$$ $$a_{m_0, \dots, m_i} = \xi_{i+1}^{1/q} \cdot r_{m_0, \dots, m_i}^{-1} .$$ The latter equation now yields an equation over K: $$\xi_{i+1} = a_{m_0, \dots, m_i}^q \cdot \prod_{j=0}^{i} \xi_j^m$$ In case (1) this leads to the ideal equation $$\left(\frac{\mathfrak{p}_{i+1}}{\mathfrak{p}_{i+1}'}\right)^{h}i+1 = \alpha^{q} \cdot \prod_{j=1}^{i} \left(\frac{\mathfrak{p}_{j}}{\mathfrak{p}_{j}'}\right)^{m_{j} \cdot h_{j}} ,$$ and in case (2) to $$p_{i+1}^{(')}^{h_{i+1}} = \alpha^{q} \cdot \prod_{j=1}^{i} p_{j}^{(')}^{m_{j} \cdot h_{j}}$$, (where $\mathfrak{p}^{(')}$ stands for \mathfrak{p} or \mathfrak{p}') for some fractional ideal \mathfrak{q} (note that (ξ_0) = (1)). Because of unique factorization for ideals it follows in both cases that \mathfrak{q} divides all $\mathfrak{m}_j \cdot h_j$ for $j=1,\ldots,i$ and h_{i+1} . This contradicts the assumption $\mathfrak{q} \nmid h$. Remarks. 1. If $$\operatorname{ord}_p(\alpha_1^{b_1} \cdot \ldots \cdot \alpha_n^{b_n} - 1) > 1/(p-1)$$ then $$\operatorname{ord}_p(\alpha_1^{b_1} \cdot \ldots \cdot \alpha_n^{b_n} - 1) = \operatorname{ord}_p(b_1 \cdot \log_p(\alpha_1) + \ldots + b_n \cdot \log_p(\alpha_n))$$. We prefer to work with the logarithmic version, since that is the one we use in the computational method of reducing the upper bounds. 2. In order to apply Yu's lemma we can take for $\,q\,$ the smallest odd prime that does not divide $\,h\cdot p\cdot (p^{-p}-1)\,$. We now proceed to compute the constants C_1 to C_{12} . To find C_1 and C_2 we apply Lemma 2.6 to Λ_i^* , for all $i \in I_U$. Then we find for each such i constants $C_{1,i}$, $C_{2,i}$ such that, under the conditions $$u_i + \lambda_i \ge \gamma_i$$, $B^* \ge \max \left(2, \frac{4}{3} \cdot t_i \cdot (p_i^{-1}) \right)$, (where t denotes the number of terms in $\Lambda_{\bf i}^{*}$), we obtain $$\operatorname{ord}_{\mathfrak{p}_{\underline{\mathbf{i}}}}(\Lambda_{\underline{\mathbf{i}}}^{\underline{\star}}) < C_{1,\underline{\mathbf{i}}} + C_{2,\underline{\mathbf{i}}} \cdot \log B^{\underline{\star}}$$. By Lemma 7.6(i) and the relation ord $p = e_p \cdot \text{ord}_p$ we see that, assuming the conditions $$U \ge \max_{\mathbf{i} \in I_{\mathbf{U}}} (\gamma_{\mathbf{i}} - \lambda_{\mathbf{i}}), \quad \mathbf{B}^* \ge \max_{\mathbf{i} \in I_{\mathbf{U}}} \left(2, \frac{4}{3} \cdot \mathbf{t}_{\mathbf{i}} \cdot (\mathbf{p}_{\mathbf{i}} - 1) \right)$$ (7.20) it suffices to take $$^{\text{C}}_{1} = \max_{i \in \text{I}_{\text{U}}} \left(\begin{array}{c} -(\lambda_{i} + \text{ord}_{p_{i}}(\textbf{h}^{\star})) + \text{C}_{1,i}/\textbf{e}_{p_{i}} \end{array} \right) \text{ , } \text{C}_{2} = \max_{i \in \text{I}_{\text{U}}} \left(\begin{array}{c} \text{C}_{2,i}/\textbf{e}_{p_{i}} \end{array} \right) \text{ .}$$ Then (7.14) holds. Next we apply Lemma 2.6 to K_{i}^{\star} and ${K_{i}^{\prime}}^{\star}$, for all $i \in I$ and I^{\prime} respectively, to obtain C_{3} and C_{4} . By $X^{(\prime)}$ we denote X if $i \in I$, and X^{\prime} if $i \in I^{\prime}$. There exist by Lemma 2.6 constants $C_{3,i}$ and $C_{4,i}$ such that under the conditions (where again t_i denotes the number of terms of $K_i^{(\ ')\star}$), it follows that $$\operatorname{ord}_{p_{i}}(K_{i}^{(')*}) < C_{3,i} + C_{4,i} \cdot \log B^{*}$$. Again, by Lemma 7.6(ii),(ii') it follows that, under the conditions $$M \ge \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} \left(\frac{\gamma_{\mathbf{i}} - \kappa_{\mathbf{i}}^{(')}}{h_{\mathbf{i}}} \right), \quad B^* \ge \max_{\mathbf{i} \in \mathbf{I} \cup \mathbf{I}'} \left(2, \frac{4}{3} \cdot t_{\mathbf{i}} \cdot (p_{\mathbf{i}} - 1) \right)$$ (7.21) it suffices to take $$C_{3} = \max_{i \in I \cup I'} \left(\frac{\kappa_{i}^{(')} + \text{ord}_{p_{i}}(h^{*})}{h_{i}} + \frac{C_{3,i}}{h_{i} \cdot e_{p_{i}}} \right), \quad C_{4} = \max_{i \in I \cup I'} \left(\frac{C_{4,i}}{h_{i} \cdot e_{p_{i}}} \right).$$ Then (7.15) holds. We take C_5 to C_7 as follows: $$\begin{aligned} & C_5 = \log(2 \cdot \left| \frac{\alpha'}{\alpha} \right|) / 2 \cdot \log \epsilon , & C_6 = \log(2 \cdot \left| \frac{\alpha}{\alpha'} \right|) / 2 \cdot \log \epsilon , \\ & C_7 = \left(\sum_{\mathbf{i} \in \mathbf{I}} \log \left| \frac{\pi_{\mathbf{i}}}{\pi_{\mathbf{i}}'} \right| + \sum_{\mathbf{i} \in \mathbf{I}'} \log \left| \frac{\pi_{\mathbf{i}}'}{\pi_{\mathbf{i}}} \right| \right) / 2 \cdot \log \epsilon . \end{aligned}$$ Note that C $_5$ or C $_6$ may be negative, but that always $-\text{C}_6 < \text{C}_5$. Further, C $_7$ is always strictly positive, unless I = I' = Ø . Next we show how to take C $_8$ and C $_9$. Suppose first that $$n > max (C_5, 0)$$. Then, from $\epsilon \cdot \epsilon' = \pm 1$ and the choice of π_i we find by (7.8) that $$\left|\frac{\chi}{\chi'}\right| = \left|\frac{\alpha}{\alpha'}\right| \cdot \left|\frac{\epsilon}{\epsilon'}\right|^n \cdot \prod_{i \in I} \left|\frac{\pi_i}{\pi_i'}\right|^{c_i} \cdot \prod_{i \in I'} \left|\frac{\pi_i'}{\pi_i}\right|^{c_i} \geq \left|\frac{\alpha}{\alpha'}\right| \cdot \epsilon^{2 \cdot n} > 2 ,$$ which expresses that the first term of $\ensuremath{\mathsf{G}}_{lpha}$ dominates. Put $$P = \prod_{i \in I_{IJ}} P_i$$. Then we infer $$\begin{split} \mathbf{P}^{\mathbf{U}} & \geq \prod_{\mathbf{i} \in \mathbf{I}_{\mathbf{U}}} \mathbf{p_{\mathbf{i}}}^{\mathbf{u}_{\mathbf{i}}} = |\chi - \chi'|/2 \cdot \sqrt{D} > |\chi|/4 \cdot \sqrt{D} \\ & = \frac{|\alpha|}{4\sqrt{D}} \cdot \epsilon^{\mathbf{n}} \cdot \prod_{\mathbf{i} \in \mathbf{I}} |\pi_{\mathbf{i}}|^{\mathbf{c}_{\mathbf{i}}} \cdot \prod_{\mathbf{i} \in \mathbf{I}'} |\pi_{\mathbf{i}'}|^{\mathbf{c}_{\mathbf{i}}} > \frac{|\alpha|}{4\sqrt{D}} \cdot \epsilon^{\mathbf{n}} , \end{split}$$ hence $$n < \left(\log(\frac{4\sqrt{D}}{|\alpha|}) + U \cdot \log(P) \right) / \log \epsilon$$. Next suppose that $$n < min (-(C_6 + C_7 \cdot M), 0)$$. Then we find that the second term of $\ensuremath{\text{G}}_{lpha}$ dominates, namely $$\left| \frac{\chi'}{\chi}
\right| = \left| \frac{\alpha'}{\alpha} \right| \cdot \left| \frac{\epsilon'}{\epsilon} \right|^{n} \cdot \prod_{i \in I} \left| \frac{\pi'_{i}}{\pi_{i}} \right|^{c} i \cdot \prod_{i \in I} \left| \frac{\pi_{i}}{\pi'_{i}} \right|^{c} i$$ $$\geq \left| \frac{\alpha'}{\alpha} \right| \cdot \epsilon^{-2 \cdot n} \cdot \left(\prod_{i \in I} \left| \frac{\pi'_{i}}{\pi_{i}} \right| \cdot \prod_{i \in I} \left| \frac{\pi_{i}}{\pi'_{i}} \right| \right)^{M} = \left| \frac{\alpha'}{\alpha} \right| \cdot \epsilon^{-2 \cdot (n + C_{7} \cdot M)}$$ $$\geq \left| \frac{\alpha'}{\alpha} \right| \cdot \epsilon^{2 \cdot C_{6}} = 2 .$$ Put $$\Gamma = \prod_{i \in I} \min \left(1, |\pi'_i| \right) \cdot \prod_{i \in I'} \min \left(1, |\pi_i| \right).$$ Then we infer $$\mathbf{P}^{\mathbf{U}} \geq |\chi - \chi'|/2 \cdot \sqrt{\mathbf{D}} > |\chi'|/4 \cdot \sqrt{\mathbf{D}} = \frac{|\alpha'|}{4\sqrt{\mathbf{D}}} \cdot \epsilon^{|\mathbf{n}|} \cdot \prod_{\mathbf{i} \in \mathbf{I}} |\pi'_{\mathbf{i}}|^{\mathbf{c}_{\mathbf{i}}} \cdot \prod_{\mathbf{i} \in \mathbf{I}'} |\pi_{\mathbf{i}}|^{\mathbf{c}_{\mathbf{i}}}$$ $$\geq \frac{|\alpha'|}{4\sqrt{D}} \cdot \epsilon^{|n|} \cdot \prod_{i \in I} \min(1, |\pi'_{i}|)^{c_{i}} \cdot \prod_{i \in I'} \min(1, |\pi_{i}|)^{c_{i}}$$ $$\geq \frac{|\alpha'|}{4\sqrt{D}} \cdot \epsilon^{|n|} \cdot \Gamma^{M} > \frac{|\alpha'|}{4\sqrt{D}} \cdot \epsilon^{|n|} \cdot \Gamma^{-(|n|-C_{6})/C_{7}} .$$ Hence $$|\mathbf{n}| < \left(\log \left(\frac{4\sqrt{D}}{|\alpha'|} \cdot \Gamma^{-C_6/C_7} \right) + U \cdot \log(P) \right) / \log \left(\epsilon \cdot \Gamma^{1/C_7} \right) .$$ The remaining possibilities in cases (b) and (c) are $C_5 < n \le 0$ and $0 \le n < -(C_6 + C_7 \cdot M) < -C_6$. So we may take, noting that $\Gamma \le 1$, $$C_8 = \max \left[\log \left(\frac{4\sqrt{D}}{|\alpha|} \right) / \log \epsilon, \log \left(\frac{4\sqrt{D}}{|\alpha'|} \cdot \Gamma^{-C_6/C_7} \right) / \log \left(\epsilon \cdot \Gamma^{-1/C_7} \right), -C_5, -C_6 \right],$$ $$C_9 = (\log P) / \log \left(\epsilon \cdot \Gamma^{-1/C_7} \right).$$ Then (7.18) holds in the cases (b) and (c) . Now take $$\begin{split} & c_{10} = \max \left(\ c_1, \ c_3, \ |c_5|, \ |c_6| + c_3 \cdot c_7, \ c_8 + c_1 \cdot c_9 \ \right) \ , \\ & c_{11} = \max \left(\ c_2, \ c_4, \ c_4 \cdot c_7, \ c_2 \cdot c_9 \ \right) \ . \end{split}$$ Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold. Hence, by Lemma 2.1, we infer the following result. LEMMA 7.8. In the above notation, $$B^* < C_{12}^*$$, $B < C_{12}$ hold unconditionally, where $$\begin{split} \mathbf{C}_{12}^{\star} &= \max \left[\ 2 \cdot \left(\mathbf{N} + \mathbf{h}^{\star} \cdot \mathbf{C}_{10} + \mathbf{h}^{\star} \cdot \mathbf{C}_{11} \cdot \log(\mathbf{h}^{\star} \cdot \mathbf{C}_{11}) \right), \ \max_{i \in \mathbf{I}_{U}} \left(\mathbf{h}^{\star} \cdot (\gamma_{i}^{-\lambda}_{i}) + \mathbf{N} \right), \\ &\max_{i \in \mathbf{I} \cup \mathbf{I}'} \left(\mathbf{h}^{\star} \cdot \frac{\gamma_{i}^{-\kappa_{i}^{(')}}}{\mathbf{h}_{i}} + \mathbf{N} \right), \ 2, \ \max_{i \in \mathbf{I} \cup \mathbf{I}' \cup \mathbf{I}_{U}} \left(\frac{4}{3} \cdot \mathbf{t}_{i} \cdot (\mathbf{p}_{i}^{-\lambda_{i}} - 1) \right) \right], \\ &\mathbf{C}_{12} &= \frac{1}{1} \star \cdot (\mathbf{C}_{12}^{\star} + \mathbf{N}) \end{split}$$ <u>Proof.</u> Clear. Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8. 2. In practice, almost always the first term in the max-definition of C_{12}^{\star} dominates. Moreover, the term N will in practice disappear in the rounding off. Similarly, in the definitions of C_{10} and C_{11} , the dominating factors are in practice C_1 to C_4 . #### 7.7. The reduction technique. We now want to reduce the upper bound C_{12} for B (or C_{12}^* for B^{*}, which is equivalent), to a much smaller upper bound. We do so using the p-adic computational diophantine approximation technique described in Section 3.11. We perform this procedure for $\Lambda=\Lambda_{\bf i}^*, \ K_{\bf i}^*, \ K_{\bf i}^{\prime *}$, for the relevant $\bf i$. We work in the p-adic approximation lattices Γ_{μ} themselves, and not in the sublattices described in Section 3.13. The computational bottlenecks are the computation of the p-adic logarithms to the desired precision, and the application of the L^3 -Algorithm. We refer to Chapter 3 for details. Once we have found reduced bounds for $\operatorname{ord}_p(\Lambda)$ for the above mentioned Λ , we combine these bounds with Lemma 7.6 and with estimates (7.13), (7.17) and (7.18) to find reduced bounds for B and B*. When reduced upper bounds for B, B^* are found in this way, we may try the above procedure again, with C_{12} , C_{12}^* replaced by their reduced analogons. We may repeat the argument as long as improvement is still being made. But at a certain stage, usually near to the actual largest solution, the procedure will not yield any further improvement. Then we have to find all solutions by some other method. One technique that may be useful is the algorithm of Fincke and Pohst, described in Section 3.6. Another way is to search directly for solutions of the original diophantine equation below the reduced bounds. In our present equation this may well be done by employing congruence arguments for finding all solutions of the second equation of system (7.9) below the obtained bounds. #### 7.8. The standard example. In this section we shall work out the procedure outlined above for our standard example { p_1 , ..., p_s } = { 2, 3, 5, 7 } , thus proving Theorem 7.2. In Tables II and III we give the necessary data on the fields $K = \mathbb{Q}(\sqrt{D})$ for the 15 values of D , and on the factorization of 2, 3, 5, 7 in K . Explanation of Tables II and III. For p_i = 2, 3, 5, 7 we give in Table II a generator of the ideal p_i with $\operatorname{ord}_{p_i}(p_i) > 0$ if p_i is a principal ideal, and we give " p_i " if it is not principal. In all the latter cases, h_i = 2, so p_i^2 = (π_i) is principal. An asterisk (*) denotes a splitting prime. Note that for each D at most one of the primes 2, 3, 5, 7 splits, so t \leq 1. In the final column of Table II we give for the splitting prime h_i a generator π_i of the ideal p_i . In Table III, when p_i and p_j are not principal, but $p_i \cdot p_j$ is, we give a generator of it. From Tables II and III it is easy to find all possibilities for I, I' and α . We may assume I' = \emptyset . In Table IV we give all possible I, I_U, α (we give primes p_i instead of indices i). An asterisk (*) appears when $(\alpha) \neq (\alpha')$. The set I_U is found by checking G_{α} (mod p_i) for all p_i . There are 54 cases with $I=\emptyset$ (the "symmetric" cases), and 54 cases with $I\neq\emptyset$ (the "asymmetric" cases). We start with the symmetric cases. This incorporates all cases with D=3, 5, 35, 42, 210, when none of the primes 2, 3, 5, 7 splits in $\mathbb{Q}(\sqrt{D})$. Now, t=0, hence equation (7.10) becomes $$G_{\alpha}(n) = \frac{\alpha}{2\sqrt{D}} \cdot \epsilon^{n} - \frac{\alpha'}{2\sqrt{D}} \cdot \epsilon'^{n} = \pm \prod_{i \in I_{U}} p_{i}^{u_{i}}.$$ (7.22) With A = ϵ + ϵ' \in $\mathbb Z$, B = N ϵ = $\epsilon \cdot \epsilon'$ = ± 1 , we have for all n \in $\mathbb Z$ $$G_{\alpha}(n+2) = A \cdot G_{\alpha}(n+1) - B \cdot G_{\alpha}(n)$$. Since $(\alpha)=(\alpha')$, there is an $n_0\in\mathbb{Z}$ such that $\alpha'=\pm\epsilon^{n_0}\cdot\alpha$. Hence $$|G_{\alpha}(n_0-n)| = |G_{\alpha}(n)|$$ for all $n \in \mathbb{Z}$, which explains why we call these cases "symmetric". In this situation we can apply elementary congruence arguments, as explained in Section 4.5. We have the following result. <u>LEMMA 7.9.</u> Let { p_1 , ..., p_4 } = { 2, 3, 5, 7 } . Equation (7.1) with conditions (7.2) and $I = \emptyset$ has exactly 91 solutions, that appear in Table I marked with an asterisk (*). Sketch of proof. In Table V we give the necessary data for these 54 cases. We explain this table, and leave many details to the reader to check. For each p = 2, 3, 5, 7 we give ℓ_1 , n_1 , a_1 , h_2 , ..., h_7 . If for a p only ℓ_1+1 is given, then p ℓ $G_{\alpha}(n)$ for all $n\in\mathbb{Z}$, and $p\in\mathbb{Z}$ of $G_{\alpha}(n)$ for at least one $n\in\mathbb{Z}$. If n_1 , n_1 are given, then $$\ell_1+1$$ $p \mid G_{\alpha}(n) \Leftrightarrow n = n_1 \pmod{a_1}$. Define $n_2=a_1$ if $n_1=0$, and $n_2=n_1$ if $n_1\neq 0$. Then n_2 is the smallest positive index such that p=0 | $G_{\alpha}(n_2)$. Now it is true that $$G_{\alpha}(n_2) \mid G_{\alpha}(n)$$ whenever $n = n_1 \pmod{a_1}$, This is related to symmetry properties of the recurrence sequence $\{G_{\alpha}(n)\}_{n=-\infty}^{\infty}$. For q = 2, 3, 5, 7 we have defined $$h_q = ord_q(G_\alpha(n_2))$$. Hence $2^{h_2} \cdot 3^{h_3} \cdot 5^{h_5} \cdot 7^{7}$ | $G_{\alpha}(n)$ whenever p | $G_{\alpha}(n)$. We have taken ℓ_1 so large that always $$G_{\alpha}(n_2) > 2^{h_2} \cdot 3^{h_3} \cdot 5^{h_5} \cdot 7^{h_7}$$ (7.23) $$\operatorname{ord}_{p}(G_{\alpha}(n)) \leq \ell_{1}$$. In this way we find with ease all solutions of (7.22). Let us illustrate this with the example D=3 , $\alpha=\sqrt{3}$. Then $$G_{\alpha}(n) = \frac{1}{2} \cdot (2+\sqrt{3})^n + \frac{1}{2} \cdot (2-\sqrt{3})^n$$, and $G_{\alpha}(-n) = G_{\alpha}(n)$. We have for $G_{\alpha}(n)$: | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |-----------------|---|----|----|-----|----|----|-----|----|---|----|-----|------------------|-----|-------------|------|-----| | $G_{\alpha}(n)$ | | | | | | | | | | | | G _α (| 14) | - 50 | 8435 | 27 | | mod 4 | 1 | 2 | -1 | 2 | 1 | 2 | -1 | 2 | 1 | 2 | -1 | 2 | 1 | 2 | -1 | 2 | | mod 3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | | mod 5 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 |
2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | | mod 49 | 1 | 2 | 7 | -23 | -1 | 19 | -21 | -5 | 1 | 9 | -14 | -16 | -1 | 12 | 0 | -12 | We see that 2^2 , 3, 5 $\not \mid G_{\alpha}(n)$ for all $n \in \mathbb{Z}$, and $2 \mid G_{\alpha}(n)$ if and only if n odd. So p = 7 is the only interesting case. We have $7 \mid G_{\alpha}(n)$ if and only if $n = 2 \pmod{4}$, $7^2 \mid G_{\alpha}(n)$ if and only if $n = 14 \pmod{28}$, (and in general $$7^{k} \mid G_{\alpha}(n) \Leftrightarrow n = 2 \cdot 7^{k-1} \pmod{4 \cdot 7^{k-1}}$$ for $k\geq 1$, and a similar relation holds for any symmetric recurrence and any prime p for which arbitrary high powers of p occur in $G_{\alpha}(n)$). Now, $\boldsymbol{\ell}_1=0$ does not lead to (7.23), since then $n_2=2$, and $G_{\alpha}(2)=7$, so that no suitable r exists. But with $\boldsymbol{\ell}_1=1$ we have $n_2=14$, and $h_2=h_3=h_5=0$, $h_7=2$, and (7.23) holds, since $G_{\alpha}(14)>7^2$. Hence there exists a prime $r\geq 11$ such that $r\mid G_{\alpha}(14)$, and thus $r\mid G_{\alpha}(n)$ whenever $T^2\mid G_{\alpha}(n)$. It follows that for solutions of (7.22) we have $G_{\alpha}(n)\leq 2^1\cdot 3^0\cdot 5^0\cdot 7^1=14$, so that all solutions can be read from the above table. Note that it is not necessary that r is known explicitly, only that $G_{\alpha}(n_2)$ is large enough. In our example, r=337 or r=3079 satisfy. Finally we treat the remaining 54 cases, where $I \neq \emptyset$. Then we need the non-elementary reduction technique described in Sections 7.5 to 7.7. In all our instances, the set I contains only one element, since there is only one splitting prime. We denote by π the π_i belonging to this prime, and we write m for c_i . Equation (7.10) now reads $$\frac{\alpha}{2\sqrt{D}} \cdot \epsilon^{\, \mathbf{n}} \cdot \boldsymbol{\pi}^{\, \mathbf{m}} \; - \; \frac{\alpha'}{2\sqrt{D}} \cdot \epsilon'^{\, \mathbf{n}} \cdot \boldsymbol{\pi'}^{\, \mathbf{m}} \; = \; \pm \prod\limits_{\mathbf{j} \in \mathbf{I}_{\mathbf{II}}} \mathbf{p}_{\, \mathbf{j}}^{\, \mathbf{u}} \; \boldsymbol{j} \quad .$$ We computed the constants C_1 to C_{12} , C_{12}^* , according to Section 7.6, for each of the 54 cases. We omit the details of these computations, and simply give the data in Table VI. In this table we give for each D the $p_i \in I_U$ together with the ν_i and λ_i (it turns out that the λ_i do not depend on the α , only on the $\rm p_i$). The values "n_{\epsilon}, n_{\pi}, n_2, n_3, n_5, n_7" are the integers such that $$\alpha^2 = \pm \epsilon^{n} \epsilon^{-n} \pi^{-n} 2^{2} \cdots 7^{n} .$$ It follows that in all cases we have $\ c_{12}^{\star} < 3.23{\times}10^{30}$. The next step is to define the lattices, and find lower bounds for the shortest nonzero vectors in the lattices. We start with treating the Λ_1^* , of which there are 3 for each of the 10 D's . We have computed the 30 values of $$\vartheta = -\frac{\log_{p_{i}}\left(\frac{\pi}{\pi'}\right)}{\log_{p_{i}}\left(\frac{\epsilon}{\epsilon'}\right)} \quad \text{or} \quad -\frac{\log_{p_{i}}\left(\frac{\epsilon}{\epsilon'}\right)}{\log_{p_{i}}\left(\frac{\pi}{\pi'}\right)} ,$$ such that it is a $\mathbf{p_i}$ -adic integer, to the desired precision of μ digits. We took μ as follows: | $^{\mathrm{p}}$ i | μ | $p_{\mathbf{i}}^{\mu}$ | |-------------------|-----|------------------------| | 2 | 209 | 8.22×10 ⁶² | | 3 | 133 | 2.87×10 ⁶³ | | 5 | 95 | 2.52×10 ⁶⁶ | | 7 | 76 | 1.69×10 ⁶⁴ | in order to have p_i^μ somewhat larger than the maximal $C_{12}^{\star 2}$, being 1.05×10^{61} . We computed the 30 values of the $\vartheta^{(\mu)}$'s, but do not give them here. The lattices Γ_μ are generated by the column vectors of the matrices $$\left[\begin{array}{cc} 1 & 0 \\ {\vartheta}^{(\mu)} & {\mathfrak{p}}^{\mu} \end{array}\right] .$$ We performed the p-adic continued fraction algorithm of Section 3.10 for each of these 30 lattices. In the table below we give for each D the maximal C_{12}^{\star} (there is one for each α), and the minimal bound for $\ell(\Gamma_{\mu})$ (there is one for each $i \in I_U$) that we found. We omit further details. In all cases, $\ell(\Gamma_{\mu}) > \sqrt{2 \cdot C_{12}^{\star}}$. Hence Lemma 3.14 with n=2, $c_1=0$, $c_2=1$ yields $$\operatorname{ord}_{p_{\mathbf{i}}}(\Lambda_{\mathbf{i}}^{\star}) \, < \, \mu \, + \, \mu_{\mathbf{0}} \ , \quad \mathbf{i} \, \in \, \mathbf{I}_{\mathbf{U}} \ ,$$ where $$\boldsymbol{\mu}_0 = \min \ \big(\ \operatorname{ord}_{\boldsymbol{p}_{\boldsymbol{i}}} (\log_{\boldsymbol{p}_{\boldsymbol{i}}} (\frac{\epsilon}{\epsilon'})) \,, \ \operatorname{ord}_{\boldsymbol{p}_{\boldsymbol{i}}} (\log_{\boldsymbol{p}_{\boldsymbol{i}}} (\frac{\pi'}{\pi'})) \, \big) \ ,$$ | D | p | ^μ 0 | $c_{12}^{\star} \leq$ | $\ell(\Gamma_{\mu}) >$ | U ≤ | |-----|---------|----------------|-----------------------|------------------------|-----| | 2 | 2, 3, 5 | 1.5, 1.0, 1.0 | 3.19×10 ²⁸ | 8.26×10 ³⁰ | 210 | | 6 | 2, 3, 7 | 1.5, 1.5, 1.0 | 2.72×10 ²⁶ | 2.05×10 ³¹ | 210 | | 7 | 2, 5, 7 | 2.0, 1.0, 0.5 | 1.07×10 ³⁰ | 2.43×10 ³¹ | 210 | | 10 | 2, 5, 7 | 1.5, 0.5, 1.0 | 3.22×10 ²⁹ | 2.22×10 ³¹ | 210 | | 14 | 2, 3, 7 | 1.5, 1.0, 0.5 | 4.80×10 ²⁶ | 1.48×10 ³¹ | 210 | | 15 | 2, 3, 5 | 3.5, 1.5, 0.5 | 2.15×10 ²⁸ | 1.55×10 ³¹ | 212 | | 21 | 2, 3, 7 | 3.0, 0.5, 0.5 | 1.90×10 ²⁶ | 7.78×10 ³⁰ | 211 | | 30 | 2, 3, 5 | 2.5, 0.5, 0.5 | 4.15×10 ²⁸ | 1.37×10 ³¹ | 211 | | 70 | 2, 5, 7 | 2.5, 0.5, 0.5 | 3.23×10 ³⁰ | 2.51×10 ³¹ | 211 | | 105 | 3, 5, 7 | 1.5, 0.5, 0.5 | 4.54×10 ²⁹ | 3.96×10 ³¹ | 134 | as given above. By λ_i + ord $p_i^{(h)} \ge 0$ we obtain from Lemma 7.6(i) upper bounds for u_i , $i \in I_U$, hence the upper bounds for U, as given in the table above. Next, we treat the K_{i}^{*} , one for each D , having 5 terms, namely $$K_{\mathbf{i}}^{*} = n^{*} \cdot \log_{\mathbf{p}_{\mathbf{i}}}(\epsilon') + m^{*} \cdot \log_{\mathbf{p}_{\mathbf{i}}}(\pi') - \sum_{\substack{1 \leq j \leq 4 \\ j \neq \mathbf{i}}} u_{\mathbf{j}}^{*} \cdot \log_{\mathbf{p}_{\mathbf{i}}}(\mathbf{p}_{\mathbf{j}}) ,$$ where $i \in I$, so p_i is the splitting prime. We have the following data. From this table our choice for $\sqrt{D} \pmod{p_i}$ becomes clear. | D | n | √D (mod p _i) | | ord | i _{p_i} (10 | og _p | (·)) | | |-----|----------------|---------------------------|----|-----|--------------------------------|-----------------|------|---| | D | ^p i | y b (mod p _i) | ε' | π' | 2 | 3 | 5 | 7 | | 2 | 7 | 3 | 1 | 2 | 1 | 1 | 1 | _ | | 6 | 5 | 4 | 1 | 1 | 1 | 1 | - | 2 | | 7 | 3 | 1 | 1 | 1 | 1 | - | 1 | 1 | | 10 | 3 | 2 | 1 | 1 | 1 | - | 1 | 1 | | 14 | 5 | 2 | 1 | 1 | 1 | 1 | _ | 2 | | 15 | 7 | 6 | 1 | 1 | 1 | 1 | 1 | - | | 21 | 5 | 4 | 1 | 1 | 1 | 1 | - | 2 | | 30 | 7 | 4 | 1 | 1 | 1 | 1 | 1 | _ | | 70 | 3 | 2 | 1 | 1 | 1 | _ | 1 | 1 | | 105 | 2 | 1 (mod 4) | 2 | 4 | - | 2 | 2 | 3 | It follows that $\inf_{p_i} (\log_{p_i}(\epsilon'))$ is always the least one of the five ord 's in the above table. So we define: $$\vartheta_{1} = -\frac{\log_{p_{i}}(\pi')}{\log_{p_{i}}(\epsilon')}, \quad \vartheta_{2,3,4} = -\frac{\log_{p_{i}}(p_{j})}{\log_{p_{i}}(\epsilon')}, \quad (j \in \{1,2,3,4\}, j \neq i),$$ and we computed these numbers up to μ digits, with μ as follows. | $^{\mathtt{p}}_{\mathtt{i}}$ | μ | $\mathtt{p}_\mathtt{i}^\mu$ | |------------------------------|-----|-----------------------------| | 2 | 539 | 1.80×10 ¹⁶² | | 3 | 343 | 4.49×10 ¹⁶³ | | 5 | 245 | 1.77×10 ¹⁷¹ | | 7 | 196 | 4.36×10 ¹⁶⁵ | so that p_i^μ is somewhat larger than the maximal C_{12}^{*5} . We computed the 40 values of the $\vartheta_{1,2,3,4}^{(\mu)}$, but do not give them here. The lattices Γ_μ are generated by the columns of the following matrices: We computed the reduced bases of the 10 lattices by the L^3 -algorithm. Again, we omit the computational details. We found data as follows. | D | p in I | μ | ^μ 0 | c* ₁₂ ≤ | $\ell(\Gamma_{\mu}) >$ | M ≤ | |-----|--------|-----|----------------|-----------------------|------------------------|-----| | 2 | 7 | 196 | 1 | 3.19×10 ²⁸ | 2.25×10 ³² | 196 | | 6 | 5 | 245 | 1 | 2.72×10 ²⁶ | 2.16×10 ³³ | 245 | | 7 | 3 | 343 | 1 | 1.07×10 ³⁰ | 1.14×10^{32} | 343 | | 10 | 3 | 343 | 1 | 3.22×10 ²⁹ | 1.07×10 ³² | 343 | | 14 | 5 | 245 | 1 | 4.80×10 ²⁶ | 4.92×10 ³³ | 245 | | 15 | 7 | 196 | 1 | 2.15×10 ²⁸ | 2.78×10 ³² | 196 | | 21 | 5 | 245 | 1 | 1.90×10 ²⁶ | 4.37×10^{33} | 245 | | 30 | 7 | 196 | 1 | 4.15×10 ²⁸ | 2.69×10 ³² | 196 | | 70 | 3 | 343 | 1 | 3.23×10 ³⁰ | 1.03×10 ³² | 343 | | 105 | 2 | 539 | 2 | 4.54×10 ²⁹ | 6.68×10 ³¹ | 540 | | | 1 | | | | | | In all instances, $\ell(\Gamma_{\mu}) > \sqrt{5 \cdot C_{12}^{\star}}$, so that by Lemmas 3.14 and 7.6(ii) and $\kappa_i + \operatorname{ord}_{p_i}(h^{\star}) \geq 0$ and $h_i \geq 1$ we have $M \leq \operatorname{ord}_{p_i}(K_i^{\star}) < \mu + \mu_0$, hence an upper bound for M as given in the table above. Finally, we compute the new, reduced bounds for |n| , and thus for B . This we do by $$|n| < \max (C_5, C_6 + C_7 \cdot M, C_8 + C_9 \cdot U)$$. Hence we find data as in the following table. Here we used $B^* \le h^* \cdot B + N$ and $h^* = 2$. So in one step we have reduced the bound $B^* < 3.23 \times 10^{31}$ to $B^* \le 1627$. The total computation time was 1715 sec, on average 0.7 sec for each 2-dimensional lattice, and 170 sec for each 5-dimensional lattice. | D | c ₅ < | c ₆ < | c ₇ < | c ₈ < | c ₉ < | M ≤ | U ≤ | n ≤ | В ≤ | N ≤ | B* ≤ | |-----|------------------|------------------|------------------|------------------|------------------|-----|-----|------|-----|-----|------| | 2 | 0.394 | 0.394 | 0.420 | 1.967 | 3.859 | 196 | 210 | 812 | 812 | 3 | 1627 | | 6 | 0.152 | 0.652 | 0.190 | 1.345 | 1.631 | 245 | 210 | 343 | 343 | 3 | 689 | | 7 | 0.126 | 0.626 | 0.357 | 2.702 | 2.757 | 343 | 210 | 581 | 581 | 2 | 1164 | | 10 | 0.601 | 0.191 | 0.181 | 1.396 | 2.337 | 343 | 210 | 492 | 492 | 3 | 987 | | 14 |
0.102 | 0.602 | 0.325 | 1.861 | 1.508 | 245 | 210 | 318 | 318 | 3 | 639 | | 15 | 0.540 | 0.668 | 0.257 | 1.394 | 1.649 | 196 | 212 | 350 | 350 | 2 | 702 | | 21 | 0.222 | 0.722 | 0.142 | 1.564 | 2.386 | 245 | 211 | 505 | 505 | 1 | 1011 | | 30 | 0.414 | 0.613 | 0.399 | 1.239 | 1.102 | 196 | 211 | 233 | 233 | 3 | 469 | | 70 | 0.362 | 0.556 | 0.390 | 2.729 | 1.505 | 343 | 211 | 320 | 343 | 3 | 689 | | 105 | 0.390 | 0.579 | 0.379 | 3.232 | 2.545 | 540 | 134 | 344 | 540 | 1 | 1081 | We made a further reduction step, now using the reduced bound for B^* as given above in stead of C_{12}^* . We give the data for the Λ_1^* in the table below. For μ we took $\mu_1\cdot\mu_2$, with μ_1 as above, and μ_2 as below: We found $\ell(\Gamma_{\mu})$ and bounds for U as given above. For the K_{i}^{*} we found, with $\mu = \mu_{1} \cdot \mu_{2}$ with μ_{2} as above, and μ_{1} as in the first table below, the results given in the second table below. | D | B* ≤ | √2·B* < | μ_1 | μ ≤ | $\ell(\Gamma_{\mu}) \geq$ | $\mu_0 \leq$ | U ≤ | | | | |-------------------------------------|--|--|---------------------------------|--|---|----------------------------|--|---|---|---| | . 2 | 1627 | 2301 | 2 | 22 | 1.82×10 ³ | 1.5 | 23 | | | | | 6 | 689 | 975 | 3 | 33 | 3.99×10 ⁴ | 1.5 | 34 | | | | | 7 | 1164 | 1647 | 3 | 33 | 4.50×10 ⁴ | 2 | 34 | | | | | 10 | 987 | 1396 | 3 | 33 | 5.91×10 ⁴ | 1.5 | 34 | | | | | 14 | 639 | 904 | 3 | 33 | 2.58×10 ⁴ | 1.5 | 34 | | | | | 15 | 702 | 993 | 3 | 33 | 7.36×10 ⁴ | 3,5 | 36 | | | | | 21 | 1011 | 1430 | 3 | 33 | 2.00×10 ⁴ | 3 | 35 | | | | | 30 | 469 | 664 | 2 | 22 | 9.98×10 ² | 2.5 | 24 | | | | | 70 | 689 | 975 | 3 | 33 | 5.76×10 ⁴ | 2.5 | 35 | | | | | 105 | 1081 | 1529 | 3 | 21 | 3.89×10 ⁴ | 1.5 | 22 | | | | | | | | | | | | | | | | | D | B* ≤ | √5 · B* < | ^μ 1 | μ ≤ | $\ell(\Gamma_{\mu}) \geq$ | <i>μ</i> ₀ ≤ | M ≤ | n ≤ | В ≤ | B* ≤ | | D2 | B* ≤ | √5·B* < 3639 | ^μ 1 | μ ≤
28 | 1.24×10 ⁴ | 1 | M ≤ | n ≤ | B ≤ | B* ≤ | | | | | | | 1.24×10 ⁴
4.04×10 ³ | 1 | | | | | | 2 | 1627 | 3639 | 7 | 28 | 1.24×10^{4} 4.04×10^{3} 1.07×10^{4} | 1 | 28 | 90 | 90 | 183 | | 2 | 1627
689 | 3639
1541 | 7 | 28 | $ \begin{array}{c} 1.24 \times 10^{4} \\ 4.04 \times 10^{3} \\ 1.07 \times 10^{4} \\ 1.16 \times 10^{4} \end{array} $ | 1 1 | 28 | 90
145 | 90
145 | 183
293 | | 2
6
7 | 1627
689
1164 | 3639
1541
2603 | 7
6
7 | 28
30
49 | 1.24×10 ⁴ 4.04×10 ³ 1.07×10 ⁴ 1.16×10 ⁴ 3.07×10 ³ | 1
1
1 | 28
30
49 | 90
145
96 | 90
145
96 | 183
293
194 | | 2
6
7
10 | 1627
689
1164
987 | 3639
1541
2603
2207 | 7
6
7
7 | 28
30
49
49 | 1.24×10 ⁴ 4.04×10 ³ 1.07×10 ⁴ 1.16×10 ⁴ 3.07×10 ³ 2.70×10 ³ | 1
1
1 | 28
30
49
49 | 90
145
96
80 | 90
145
96
80 | 183
293
194
163 | | 2
6
7
10
14 | 1627
689
1164
987
639 | 3639
1541
2603
2207
1429 | 7
6
7
7
6 | 28
30
49
49
30 | 1.24×10 ⁴ 4.04×10 ³ 1.07×10 ⁴ 1.16×10 ⁴ 3.07×10 ³ 2.70×10 ³ 3.88×10 ³ | 1
1
1
1 | 28
30
49
49
30 | 90
145
96
80
53 | 90
145
96
80
53 | 183
293
194
163
109 | | 2
6
7
10
14
15 | 1627
689
1164
987
639
702 | 3639
1541
2603
2207
1429
1570 | 7
6
7
7
6
6 | 28
30
49
49
30
24 | 1.24×10 ⁴ 4.04×10 ³ 1.07×10 ⁴ 1.16×10 ⁴ 3.07×10 ³ 2.70×10 ³ 3.88×10 ³ 2.50×10 ³ | 1
1
1
1
1 | 28
30
49
49
30
24 | 90
145
96
80
53
60 | 90
145
96
80
53
60 | 183
293
194
163
109
122 | | 2
6
7
10
14
15
21 | 1627
689
1164
987
639
702
1011 | 3639
1541
2603
2207
1429
1570
2261 | 7
6
7
7
6
6
6 | 28
30
49
49
30
24
30 | 1.24×10 ⁴ 4.04×10 ³ 1.07×10 ⁴ 1.16×10 ⁴ 3.07×10 ³ 2.70×10 ³ 3.88×10 ³ | 1
1
1
1
1
1 | 28
30
49
49
30
24
30 | 90
145
96
80
53
60
85 | 90
145
96
80
53
60
85 | 183
293
194
163
109
122
171 | The computation time was 15 sec. We made a third step, with for $~\Lambda_{\dot{1}}^{\dot{x}},~K_{\dot{1}}^{\dot{x}}~:$ | D | B* ≤ | √2 · B* < | $^{\mu}1$ | μ ≤ | $\ell(\Gamma_{\mu}) \geq$ | $\mu_0 \leq$ | U ≤ | |-----|------|-----------|-----------|-----|---------------------------|--------------|-----| | 2 | 183 | 258.9 | 2 | 22 | 1821 | 1.5 | 23 | | 6 | 299 | 414.4 | 2 | 22 | 875 | 1.5 | 23 | | 7 | 194 | 274.4 | 2 | 22 | 1285 | 2 | 23 | | 10 | 163 | 230.6 | 2 | 22 | 634 | 1.5 | 23 | | 14 | 109 | 154.2 | 2 | 22 | 268 | 1.5 | 23 | | 15 | 122 | 172.6 | 2 | 22 | 873 | 3.5 | 25 | | 21 | 171 | 241.9 | 2 | 22 | 818 | 3 | 25 | | 30 | 57 | 80.7 | 2 | 22 | 998 | 2.5 | 24 | | 70 | 113 | 159.9 | 2 | 22 | 585 | 2.5 | 24 | | 105 | 157 | 222.1 | 2 | 14 | 281 | 1.5 | 15 | | | | | | | | | | | D | B [*] ≤ | √5·B* < | $^{\mu}$ 1 | μ ≤ | $\ell(\Gamma_{\mu}) \geq$ | <i>μ</i> ₀ ≤ | M ≤ | |-----|------------------|---------|------------|-----|---------------------------|-------------------------|-----| | 2 | 183 | 409.3 | 5 | 20 | 440 | 1 | 20 | | 6 | 293 | 655.2 | 5 | 25 | 665 | 1 | 25 | | 7 | 194 | 433.8 | 6 | 42 | 602 | 1 | 42 | | 10 | 163 | 364.5 | 5 | 35 | 473 | 1 | 35 | | 14 | 109 | 243.8 | 5 | 25 | 626 | 1 | 25 | | 15 | 122 | 272.9 | 6 | 24 | 2700 | 1 | 24 | | 21 | 171 | 382.4 | 5 | 25 | 645 | 1 | 25 | | 30 | 57 | 127.5 | 4 | 16 | 129 | 1 | 16 | | 70 | 113 | 252.7 | 5 | 35 | 366 | 1 | 35 | | 105 | 157 | 351.1 | 5 | 55 | 354 | 2 | 56 | | | 1 | | | | | | | and finally for $\;|n|$, and in more detail for $\;\text{ord}\;_{p_{\dot{1}}}(u)\;$ for $\;i\in I_{\dot{U}}$ | D | M ≤ | ^u 2 ≤ | u ₃ ≤ | u ₅ ≤ | u ₇ ≤ | n ≤ | |-----|-----|------------------|------------------|------------------|------------------|------| | 2 | 20 | 23 | 14 | 10 | 0 | 90 | | 6 | 25 | 23 | 15 | 0 | 8 | 38 | | 7 | 42 | 23 | 0 | 10 | 8 | 66 | | 10 | 35 | 23 | 0 | 10 | 8 | 55 | | 14 | 25 | 23 | 14 | 0 | 8 | 36 | | 15 | 24 | 25 | 15 | 10 | 0 | 42 | | 21 | 25 | 24 | 14 | 0 | 8 | 61 | | 30 | 16 | 24 | 14 | 10 | 0 | 27 | | 70 | 35 | 24 | 0 | 10 | 8 | 65 | | 105 | 56 | 0 | 14 | 10 | 8 | 41 | | | | | | | | | Now we will not find any further improvement if we proceed in the same way. But the upper bounds are now small enough to admit enumeration of the remaining possibilities, making use of mod p arithmetic for $p=2,\ 3,\ 5,\ 7$. We did so, and found the remaining solutions, presented in Table I. We used only 3 sec computer time for this last step. This completes the proof of Theorem 7.2. #### 7.9. Tables. | | Ω | 7
6
7
7
3
3
3
1
2
1
1
2
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1 | 10
105
30
105
105
105
12 | 10
10
35
30
30
3 | 2
1 1 5
1 5
2 4 2
3 5
3 0
2 1
7 0
1 0 5 | 14
21
21
7
7
105
21
70 | |----------------|-----|---|---|---
--|---| | | 13 | мммачачачч | 4 4 ሲኪ ሲ ሲ ሲ ሲ ሲ ሲ | | N 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | Ä | 11
8 4 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 5 5 1 2 4 5 5 1 5 6 1 1 2 4 5 5 1 5 6 1 1 4 5 5 6 1 1 4 5 5 6 1 5 6 1 4 5 5 6 1 5 | 1 1 1 1 1 1 2 3 5 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7
10
10
-14
-6
-1701
-896 | 1 1 1 1 1 2 4 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 | | | × | 7
7
8
9
9
9
1
1
1
1
1
1
5
1
6
1
1
1
1
1
1
1
1
1
1
1 | 10
2145
270
270
160
105
81
70
70
49 | 44 W W W W W V V V V V V V V V V V V V V | 18
116
15
15
17
17
17
19
19 | 6224
11224
1143
1155
1102
1102
1103
1104
1104
1104
1104
1104
1104
1104 | | (Theorem 7.2.) | Nr | 1 7 16 4 16 16 16 16 16 16 16 16 16 16 16 16 16 | 10
66
66
66
66
66
66
66
66 | 711
723
744
775
777
788 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 91
92
94
95
96
100 | | he. | | | | | | | | E) | | | | | | | | Table I. (T | Д | 7 1 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 2 2 2 | 21
21
10
10
7
7
7
5 | 1
3
2
10
6
6
1
1
1
2
14 | 1
7
7
7
8
8
8
10
10
11 | 30
21
21
11
11
10
2 | | -1 | Q 2 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
2
2
2
2
3
3
1
1
1
0
0
1
1
0
0
1
1
1
0
0
0
0
0
0 | 2
2
2
2
2
3
3
10
6
6
6
7
7
7
10
8
3
3
10
10
10
10
10
10
10
10
10
10
10
10
10 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | -1 | X Z | | денененен | | 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | -1 | × × | -4374
-2400
-224
-125
-80
-63
-49
-49
-35 | денененен | 000000000000000000000000000000000000000 | 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | Δ | 2
6
6
1
10
1
1 | 21
42
42
10
10
105
105
210 | 21
7
14
15
15
12
210
30 | 10
11
11
11
12
70 | 15
21
21
6
6
11
10
7 | |---------------|-----|---|---|---|---|---| | | 27 | 3333355 | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 16
16
17
17
17
17
17 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Y | 1 1 1 4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 2 8 1 | 649
100
100
11864
1180
1180 | | | × | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1 8 9 9 1 1 1 8 9 9 1 1 1 1 1 1 1 1 1 | 189
175
126
960
245
210
120 | 250
175
6261
1024
625
343
343
294
296 | 240
225
189
1225
4486
371
343 | | cont.) | Nr | 151
152
153
153
155
155
169 | 161
162
163
164
165
166
169
170 | 171
172
173
174
175
176
178
180 | 181
182
183
185
186
188
190 | 191
192
193
195
196
198
200 | | $\overline{}$ | | | | | | | | ole I. | | | | | | | | Table I. | Ω | 14 1 2 2 2 2 2 3 3 5 3 5 5 7 7 | 1
2
2
2
7
7
7
6
6
1
1
1
5 | 101
66
21
5
5
115
115 | 115
105
100
70
11 | 15
14
5
30
105
105 | | able | Q Z | | 82 7 1 | 10 | 75 0 | 11 15 11 14 11 11 11 11 11 11 11 11 11 11 11 | | able | | r 4-r | 4.6.1.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0 | | 10
10
10
10
10
11
11
11
11 | | | able | Z Z | -14
-7
-1
1
-1
4
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 4.6.1.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0 | -175
-24
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3 | 35 | | | | Ω | 105
21
21
1
1
2
6 | 14
12
12
12
13 | 7 | 30 70 | 5
15
105
2
2
3
30
105
21 | 7 | 105
105
105
105
35
6 | |-----------|-----|--|--|--|--|---|---|--| | | 7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ኮ ዕ ር መና | 1 4 4 4 . | 4 4 4 4
4 4 10 10 10 10 | 4444400000
 | | 62
63
63
68
68
71
71
71 | | | X | 280
-3
255
144
640
-114 | 625
-720
-20 | 8 H 4 H 4 P 4 P 4 P 4 P 4 P 4 P 4 P 4 P 4 | 729
686
105
-14175
-192 | 4 4 9 - 2 2 4 1 1 1 7 0 0 7 0 0 - 2 4 2 0 0 - 1 2 5 0 0 0 - 1 2 5 0 0 | 784
-405
-405
-114
-686
-32000
-315 | -125
1344
256
256
-250
-384
-10584
625 | | | × | 1345
1344
1225
1458
1536 | 000000 | 60 60 7 5 60 60 60 60 60 60 60 60 60 60 60 60 60 | 1120
1250
1920
16384
2401 | 2205
2160
2625
2400
1701
2430
2625
2401
15309 | 0 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3969
2625
39625
48480
4344
51565
70040
4006 | | cont.) | N | 251
252
253
254
255 | nun on an | 9999 | 265
267
268
269
270 | 271
272
273
274
275
276
279 | 2 8 8 2 8 8 2 8 8 9 8 8 9 8 8 9 8 9 8 9 | 291
293
294
296
296
399 | | able I. (| - | | | | | | | | | Tal | Ω | 21
70
10
10
21
21 | | | | | | | | | | | 21 21 21 21 21 21 21 21 21 21 21 21 21 2 | 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2
14
14
30
7 | 105
105
700
700
710
110
114 | 30
2 11
2 10
11 11 11 11 11 11 11 11 11 11 11 11 11 | 15
105
1 21
21
21
21
31
35 | | | 2 | 119
119
20
21
21 | 7 | 3335 | 23
23
23
23
24
23
30
77 | 24 105 25 10 25 25 25 25 25 25 25 25 25 25 25 25 25 | 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 2 2 2 7 7 7 | | | Σ | 6666011 | 1 21 21 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2
6
0
23
0
23 | ммммм | 4 ለ ህ ህ ህ ህ ህ ሪ ሪ ሪ ८ | 21 27
-6 27
84 29
11 29
10 29
10 29
10 31
11 29
10 39
10 31 | 111111111111111111111111111111111111111 | | | × × | 25
00
05
19
90
20
20
20
20
21 | 20 21 21 21 22 29 -245 22 22 29 -6 22 | 36 -2 22
15 -686 23
29 -500 23 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 50 -21 27
35 -6 27
34 -350 28
40 112 29
25 21 29
26 21 29
41 -560 31
27 -27
40 -29
41 -560 31
51 -63 31 | 1 31 10
34 31 10
35 31 20
1536 33 22 2
1536 33 10
60 33 35 2
-567 35 35 11
105 35 7 | | | Q | - | 70 | 10 | 2.1 | - | 30 | 7.0 | 21 | 1 | ٢ | | 4 6 | o c | 101 | ۰, | | , C | , , | - 1 | 21 | | 14 | 7 | 105 | 30 | 15 | ٠, | 101 | • | ٠. | 1 | 105 | 2.1 | 1 | 1 | 1 | 9 | 42 | n
T | | | | | | | | | | | | |------------------|----|--------|----------------------------
--|----------|-------------|--------------|-----------|---------------|-------------|------|------------|--------|------|------------|---------------|-------------|--------------|--------------|--------------|-------------|----------------|---------------|--------------|------------|--------------------|---|--------------|---------------|--------------|--------------|-----|-----------------|---------------|--------|-----------------|------------|-----------|-----------|------------|-------------|-----------------|-----------|-----------------|-----------------|---------------|-----------------|-----------------|------------------|----------------|--------------| | | 13 | 247 | 251 | 253 | 253 | 257 | 263 | 292 | 293 | 311 | 329 | 400 | 9.00 | | 3.8.5 | 40.4 | 407 | 410 | 431 | 443 | 447 | | 4 | ပ္ ၊ | ~ (| 7 (| η · | 4 0 | 4 6 | 3.5 | 1201 | | 28 | 0.5 | 18 | 33 | 37 | 80 1 | 8/49 | 1 | | | | | | | | | | | | | | Y | 1960 | | | 15625 | 00 | 4 | 1486 | D | 4390 | ~ | 30625 | 256 | -140 | 71680 | -33614 | 48000 | 3.0 | 6561 | 59049 | -1875 | , | . ' | 1 1 | ,
, | יי
קייי
מייי | U. U. L. T. | -112896 | 1 | -20480 | 240 | | 336 | 2 | 437 | 096- | 9.4 | ٠, | 1 8 9 - | 2 | | | | | | | | | | | | | | × | 4 | \circ | 64000 | n · | כדי ר | ~ 1 | 0 4 | 4000 | V F | 1560 | - | 128625 | m | - | m | 471 | \sim | \sim | _ | 201684 | 7 | 5 | 7 4 | 7 7 | י ב | י
י | 06 | 80 | 0.58 | 1440000 | | 64062 | 21478 | 78296 | 576480 | 790506 | 004400 | 199290375 | | | | | | | | | | | | | | cont.) | Nr | 5 | 2 | W 100 100 100 100 100 100 100 100 100 10 | nı | U P | υr | Ωu | ר ע | י ר | 0 | G | 362 | 9 | 9 | 9 | 9 | 9 | 9 | ė | - | | ~ r | · r | | | | ~ | - | - | 380 | | φ, | 00 | σ (| × | 0 0 | ο α | 388 | | | | | | | | | | | | | | \sim | | | | | _ | _ | | | | | | | | | | | _ | | | | | | _ | | | | | | | | | | | | _ | | | | | _ | | | | | | | | | | | | | le I, | ۵ | 105 | 2.1 | T | 1.0 | 15 | 105 | 10 | 105 | 105 | | 10 | m : | 70 | 1.4 | 15 | Φ. | 7 | | 7 - | 30 | 1 | 14 | 7 | 9 | - | 7 | 7 | r-1 | _ | 14 | o r | → ← | 2.1 | 10 | 105 | ស | 42 | 7 | 4.2 | 2 | 1.4 | 1.5 | 70 | 105 | 1 | 10 | 9 | 14 | - | 15 | | <u>Table I, </u> | | 75 105 | | | | | | | | | | 95 10 | 7 | 66 | 0.1 | 2 3 | 0.3 | 90 | 13 | 13 | 1.5 | 18 | 19 | 19 | 20 | 2.1 | 7 | 2.7 | 31 | m i | 37 | 0 | D 47 | 47 | 5.2 | 57 1 | 61 | 62 | 173 7 | 75 | 8.1 | 3 | 205 15 | 8 | 5 10 | 3 | 3 | 7 | 9 | - | 4 | | | Ω | | 77 | 62 | 9 79 | 79 | 85 | 1 89 | 4 91 | 4 91 | | Z. | 7.6 | 66 | 5 101 | 0.2 | 103 | 106 | 113 | 113 | 115 | 118 | 19 | 119 | 120 | 121 | 1 127 | 504 127 | 36 131 | 133 | 137 | 000 | 1 t C | 105 147 | 15 155 | 157 | 1 161 | 6 162 | 73 | 175 | 181 | 125 183 1 | 5 | 486 208 7 | 215 10 | 223 | 729 223 1 | 8125 227 | 125 229 1 | 1944 241 | 244 1 | | | Ω | 75 | 3/5 2401 /6
804 -875 77 | 561 -320 79 | 250 9 79 | 840 2401 79 | 505 +1280 85 | 840 81 89 | 625 -57344 91 | 505 -224 91 | | 0 -1215 95 | 1 97 | 800 | 206 ~5 101 | 9375 1029 102 | 0584 25 103 | 901 51+ 0571 | 2544 225 113 | 368 2401 113 | 3230 -5 115 | 5625 -1701 118 | 4336 -175 119 | 4175 -14 119 | 44066 120 | 8225 -3584 121 | 1 127 | 5625 504 127 | 5625 1536 131 | 7500 189 133 | 8144 625 137 | 200 | 7649 -97200 143 | 21504 105 147 | 15 155 | 3625 1024 157 1 | 5920 1 161 | 62506 162 | 3122 173 | 0618 7 175 | 2768 -7 181 | 3614 -125 183 1 | 715 205 1 | 3750 -486 208 7 | 6305 -80 215 10 | 0625 -896 223 | 49000 729 223 1 | 9654 -78125 227 | 5566 -3125 229 1 | 0025 -1944 241 | 9535 1 244 1 | Table II. | D | h | ϵ | Nε | \mathfrak{p}_1 | \mathfrak{p}_2 | \mathfrak{p}_3 | \mathfrak{p}_4 | πi | |-----|---|----------------------------|----|--------------------------------|----------------------------|------------------|----------------------------|------------------------------| | 2 | 1 | 1+√2 | -1 | √2 | 3 | 5 | 1+2√2 [*] | 1+2√2 | | 3 | 1 | 2+√3 | 1 | 1+/3 | √3 | 5 | 7 | - | | 5 | 1 | $\frac{1}{2}(1+\sqrt{5})$ | -1 | 2 | 3 | √ 5 | 7 | - | | 6 | 1 | 5+2√6 | 1 | 2+√6 | 3+√6 | 1+√6* | 7 | 1+/6 | | 7 | 1 | 8+3√7 | 1 | 3+√7 | 2+√7* | 5 | √ 7 | 2+√7 | | 10 | 2 | 3+√10 | -1 | ^р 1 | * ₂ * | \mathfrak{p}_3 | 7 | 1+/10 | | 14 | 1 | 15+4√14 | 1 | 4+√14 | 3 | 3+√14* | 7+2√14 | 3+√14 | | 15 | 2 | 4+√15 | 1 | \mathfrak{p}_{1} | \mathfrak{p}_2 | \mathfrak{p}_3 | p ₄ * | 8+15 | | 21 | 1 | $\frac{1}{2}(5+\sqrt{21})$ | 1 | 2 | $\frac{1}{2}(3+\sqrt{21})$ | | $\frac{1}{2}(7+\sqrt{21})$ | $\frac{1}{2}(1+\sqrt{21})$ | | 30 | 2 | 11+2√30 | 1 | \mathfrak{p}_{1} | \mathfrak{p}_2 | 5 +√ 30 | * p ₄ * | 13+2√30 | | 35 | 2 | 6+√35 | 1 | \mathfrak{p}_{1}^{r} | 3 | \mathfrak{p}_3 | P ₄ | - | | 42 | 2 | 13+2√42 | 1 | \mathfrak{p}_{1}^{T} | *** | 5 | 7+√42 | - | | 70 | 2 | 251+30√70 | 1 | *1* | P ₂ * | 25+3√70 | \mathfrak{p}_4 | 17+2√70 | | 105 | 2 | 41+4√105 | 1 | $\mathfrak{p}_{1}^{^{1}\star}$ | \mathfrak{p}_2 | 10+/105 | \mathfrak{P}_{4} | $\frac{1}{2}(11+\sqrt{105})$ | | 210 | 4 | 29+2√210 | 1 | \mathfrak{p}_{1}^{1} | P ₂ | \mathfrak{p}_3 | p ₄ | _ | # Table III. | D | $\mathfrak{p}_1 \cdot \mathfrak{p}_2$ | $\mathfrak{p}_1 \cdot \mathfrak{p}_3$ | $\mathfrak{p}_1 \cdot \mathfrak{p}_4$ | $\mathfrak{p}_2 \cdot \mathfrak{p}_3$ | $\mathfrak{p}_2 \cdot \mathfrak{p}_4$ | $\mathfrak{p}_3 \cdot \mathfrak{p}_4$ | |-----|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | 10 | -2 +√ 10 | √ 10 | _ | 5-√10 | _ | _ | | 15 | 3+√15 | 5+√15 | 1+/15 | √ 15 | 6-√15 | -5+2√15 | | 30 | 6+√30 | - | -4 +√ 30 | - | 3+√30 | - | | 35 | - | 5+√35 | 7 +√ 35 | _ | - | √ 35 | | 42 | 6+√42 | _ | - | _ | _ | - | | 70 | -8+√70 | | 42 + 5 √ 70 | - | 7+√70 | - | | 105 | $\frac{1}{2}(-9+\sqrt{105})$ | _ | $\frac{1}{2}(7+\sqrt{105})$ | - | 21+2/105 | - | | 210 | _ | - | 14+√210 | 15+√210 | - | - | | |) | | | | | | Table IV. | D | α | I | I _U | D α | I | I _U | D | α | I | I _U | |----|------------------------------|---|----------------|------------------------------|---|----------------|-----|-------------------------|---|----------------| | 2 | 1 | _ | 2357 | 14 4+√14 | _ | 7 | 35 | 1 | - | 2357 | | | 1 | 7 | 235 | 4+√14 | 5 | 7 | | √ 35 | - | 23 | | | √2 | _ | 3 7 | 7+2√14 | - | 2 | | 5 +√ 35 | _ | 7 | | | √2 | 7 | 35 | 7+2√14 | 5 | 2 | | 7+√35 | - | 5 | | 3 | 1 | - | 2357 | 15 1 | - | 2357 | 42 | 1 | - | 2357 | | | √3 | - | 2 7 | 1 | 7 | 235 | | √42 | _ | - | | | 1+/3 | _ | 3 | √ 15 | - | 2 | | 6+√42 | - | 57 | | | 3+/3 | - | 5 | √ 15 | 7 | 2 | | 7+1/42 | - | 3 | | 5 | 2 | - | 2357 | 3+√15 | - | 57 | 70 | 1 | - | 2357 | | | 2√5 | - | 23 7 | 3+√15 | 7 | 5 | | 1 | 3 | 2 57 | | 6 | 1 | _ | 2357 | 5 +√ 15 | - | 3 | | √ 70 | - | - | | | 1 | 5 | 23 7 | 5 +√ 15 | 7 | 3 | | √ 70 | 3 | - | | | √ 6 | - | 57 | 1+√15 [*] | 7 | 35 | | 25+3√70 | - | 3 7 | | | √ 6 | 5 | 7 | 15+ √ 15 [*] | 7 | - | | 25+3√70 | 3 | 7 | | | 2+√6 | - | 3 | 6-√15* | 7 | 2 5 | | 42+5√70 | - | 5 | | | 2+√6 | 5 | 3 | -5+2√15 [*] | 7 | 23 | | 42+5 √ 70 | 3 | 5 | | | 3+√6 | _ | _ | 21 2 | - | 2357 | | 7+ / 70 * | 3 | 5 | | | 3+√6 | 5 | 2 | 2 | 5 | 23 7 | | 10+ / 70* | 3 | 7 | | 7 | 1 | - | 2357 | 2√21 | - | 2 5 | | -8+√70 [*] | 3 | 57 | | | 1 | 3 | 2 57 | 2√21 | 5 | 2 | | 35-4√70 [*] | 3 | 2 | | | √ 7 | - | 2 | 3+√21 | | 2 7 | 105 | 2 | - | 2357 | | | √ 7 | 3 | 2 5 | 3+√21 | 5 | 2 7 | | 2 | 2 | 357 | | | 3+√7 | - | 7 | 7+/21 | _ | 23 | | 2√105 | - | 2 | | | 3+√7 | 3 | 57 | 7+-/21 | 5 | 23 | | 2√105 | 2 | <u> -</u> | | | 7+3√7 | - | 35 | 30 1 | - | 2357 | | 20+2√105 | - | 23 7 | | | 7+3√7 | 3 | 5 | 1 | 7 | 235 | | 20+2√105 | 2 | 3 7 | | 10 | 1 | - | 2357 | √30 | - | - | | 42 +4√ 105 | - | 2 5 | | | 1 | 3 | 2 57 | √30 | 7 | - | | 42 + 4√105 | 2 | 5 | | | √ 10 | - | 3 7 | 5+√30 | - | 3 7 | | 7+√105 [*] | 2 | 35 | | | √ 10 | 3 | 7 | 5+√30 | 7 | 3 | | 15+√105* | 2 | 7 | | | -2 +√ 10 [*] | 3 | 57 | 6+√30 | - | 5 | | -9+√105 [*] | | 57 | | | 5–√10* | 3 | 2 7 | 6+√30 | 7 | 5 | | 35–3√105 [*] | 2 | 3 | | 14 | 1 | _ | 2357 | 3+√30* | 7 | 5 | 210 | 1 | - | 2357 | | | 1 | 5 | 23 7 | 10+/30* | 7 | 3 | | √ 210 | - | - | | | √ 14 | - | 35 | -4+ / 30 [*] | 7 | 35 | | 14+/210 | - | 35 | | | √ 14 | 5 | 3 | 15-2√30* | 7 | 2 | | 15+√210 | - | 7 | | | h | 22 | 20 | J | 22 | 2 | , | 7 | ٦ | ~~ | - | - | 2 | 2 | 1 | - | - | 2 | ٦ | - | |-------------|------------------|-------|-----|----------|------------------|------|----------|------|-------|--------------|-------|-------|-------|-------|-----|-----|-----------|-------|-----|-----| | | h ₅ | 70 | 0 | > | 0 | ~ 0 | • | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | <u></u> 0 | 0 | 0 | 0 | | 7 | h ₃ | 00 | 00 | > | 1 0 | 00 | • | 7 | 0 | 10 | 0 | 0 | 2 | 0 | 0 | 0 | _ | 1 | 0 | 0 | | | h_2 | 70 | ν c | • | 00 | M C | • | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | ~ | 0 | 0 | 0 | | ď | a ₁ | 42 | 28 | | 56
56 | 28 | 3 | 7 | 7 | ∞∞ | 7 | 7 | 21 | 21 | 7 | 7 | ~ | 21 | 7 | 7 | | | $_{1}^{n}$ | 21 | 0 7 | | 28 | 0 | | 0 | М | 04 | 0 | M | 0 | 10 | 0 | 3 | 0 | 10 | 0 | 2 | | | t_1 | | ~ | 0 0 | | 20 | 000 | 0 | 000 | 00 | 00 | 000 | 70 | 0 - 0 | 0 0 | 000 | 00 | 0 7 0 | 00 | 000 | h ₇ | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | • | 0 | 0 | 00 | • | 0 | 0 | 0 | 0 | | | h ₅ | 2 | 2 | 2 | 2 | 20 | 1 | - | 2 | 7 | 2 | 7 | 7 | - | 20 | 1 | ~ | 1 | 1 | - | | 2 | h ₃ | 0 | - | 0 | 0 | 00 | • | 2 | 2 | 0 | ~-1 m | - | 0 | 0 | 0 |) | 0 | 0 | 0 | 0 | | 11 | h_2 | 0 | 0 | 0 | 0 | 70 | • | 0 | 0 | 0 | 20 | • | 0 | 0 | 00 |) | ٦ | 0 |
0 | 0 | | Д | a_1 | 15 | 15 | 15 | 25 | 10 | | M | 15 | 5 | 10 | | 7 | 5 | 10 | | 5 | 5 | 5 | 5 | | | n_1 | 0 | 0 | 7 | 0 | 0 14 |) | 0 | 7 | 0 | 0 4 | ר | 0 | 2 | 0 1 | 1 | 0 | 2 | 0 | 2 | | | t_1 | 1 0 | 7 | 0 7 | 10 | | 00 | 0 | 0 1 | 0 | | 0 0 | 0 | 00 | | 000 | 0 | 000 | 0 | 00 | $^{\rm h_7}$ | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 | | 7 | 0 | 0 | 0 | 7 | - | 00 | | | | h ₅ | 1 0 | - | 0 | 00 | 0 | 0 | - | 7 | 0.0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 00 | | | 3 | h ₃ | 2 | 2 | 2 | m m | 2 | χ. | - 2 | M | 22 | 20 | | ω, | - ω | 2 | 2 | | 2 | 20 | | | = d | h2 | 2 0 | 0 | - | 7.0 | p=4 | 0 | 0 | 0 | -0 | M C | | 0 | 0 | ~ | _ | - | 0 | 2 - | | | | a. | 12 | 6 | 6 | 36 | ω. | 6 | ω | 6 | 9 | 9 4 | | 6 - | 6 | 6 - | 6 | . 3 | 6 | 9.9 | | | | $\frac{n}{1}$ | 9 | 0 - | 4 | 18 | | J | 0 | 4 | 0 % | 0 × | | 0 | t. | 0 | | 0 | · · - | 0 8 | | | | ϵ_1 | | 70 | 0 1.0 | 22 | | 000 | 70 | 000 | ~~ | | 100 | (0) | 200 | | 0 7 | 00 | 0 - 0 | | .00 | | | 7 | 0 | - | | _ | 2 | | 0 | | 0 | 0 | | 0 | | 0 | | 0 | | 0 | | | | 5 h ₇ | 0 | 0 | | | | | 0 | | 0 | _ | | - | | | | 0 | | 0 | | | | 3 h | _ | 0 | | 2 | 0 | | _ | | _ | _ | | 0 | | _ | | 0 | | 7 | | | 2 | 2 h | м | 4 | | 5 | 4 | | 5 | | 2 | 4 | | 4 | | J. | | 2 | | 8 | | | li
Q. | a ₁ h | ∞ | ∞ | | . | œ | | 4 | | 4 | J. | | 4 | | 9 | | 2 | | 4 | | | | n ₁ a | 0 | 0 | | 0 2 | 0 | | 0 | | 0 | 0 | | 0 | | 0 | | 0 | | 0 | | | | ,
 | 20 | ~- | 00 | 5.4 | 20 € | 000 | 4 ~ | 000 | 0 | МС | 0-1 | 20 | 100 | ~ - | 15, | 70 | 00 | 2- | 100 | | | • | 0 _u | 00 | 00 | 77 | 00 | 00 | 7 7 | 00 | 7 - 7 | 00 | 00 | 7 7 | 00 | 7.7 | 00 | 77 | 00 | 1 | 00 | 77 | | | م | 0 | 0 - | | 2 | 0 - | | 0 - | ~ ~ ~ | 0 | 0 - | 1 2 | 0 - | | 0 0 | 1 | 0 - | | 0 - | | | | es . | -0 | | ~ ~ ~ | 2 | 70 | 200 | | 220 | 1 | 0 | 740 | 7 | 21.00 | 2 | 22. | | 6.50 | | 25 | | -1 | В | 77 | | | — | | | ,1 , | | 7.7 | ٦. | | | | | | | | | | | Table V | A | 2 - 2 | a a | t | , , – | | 000 | 99 | 999 | 6 -1
6 -1 | 00 | 000 | 10 KG | 0000 | | חח | 20 | 122 | | 122 | | <u>ab1,</u> | | | | | | | | | | | NN | n m m | | | | | 20 | 100 | ,I, | 77 | | Ľ | Ω | 22 | NN | nmn | 5.5 | 9 4 | 999 | 7 | | 10 | | 144 | | 17.5 | 21 | 21 | 30 | 30 | 35 | 333 | | | • | , h | | | | 1 1 | |------------------|--|----------------------|--------------------------|-------------------|--------------------------| | | h ₅ 1 | 0 0 | 0 | 0 0 | 0 0 | | 7 | h ₃] | 0 0 | | o o | o , o | | | р-,
. a _l h ₂ h ₃ h ₅ h | 0 1 | 1 0 | 3 | 0 | | • | a_1 | ~ ~ | 7 | 7 | 7 7 | | | $^{\rm n}_{\rm l}$ | 0 % | 0 M | 0 M | 0 M | | | $^{\epsilon_1}$ | 0000 | 0000 | 0000 | 0000 | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 0 | 0 0 | 0 0 | 0 0 | | | $^{\rm h}_{\rm 5}$ | m m | 2 2 | | | | u | h3 | ٣ 0 | 0 | 0 0 | 0 0 | | | h ₂ | - 0 | 1 0 | ₂ م | 1 0 | | 1 | a
a | 15 | 7 7 | יט יט | r. r. | | | $^{\rm n}_1$ | 0 2 | 0 7 | 0 2 | 0 0 | | | t_1 | 0000 | 1000 | 0000 | 0000 | | | | | | | | | | $a_1 b_2 b_3 b_5 b_7$ | 0 0 | 0 | 0 | 0 | | | $^{\rm h}_{5}$ | 2 0 | 1 0 | 0 | 0 | | ~ | $^{\rm h}_{ m 3}$ | 4 4 | 2 2 | 5 | | | ا | , -
h ₂ | 0 | 1 0 | 2 1 | 1 0 | | , | a ₁ | 6 | и и | 3 | и и | | | $^{\rm n}$ | 0 4 | 0 | 0 4 | 0 1 | | | t_1 | MOOM | 010 | 0040 | 0000 | | | a_1 h_2 h_3 h_5 h_7 ℓ_1 | | | | | | | $^{\mathrm{h}_{7}}$ | 0 | 0 | 0 | 0 | | | h ₅ | 0 | 1 | 0 | 0 | | 0 | , h ₃ | 0 | ٦ | 0 | 0 | | 1 | h ₂ | 2 | 2 | 4 | 7 | | - | | | 2 | 2 | 73 | | | u l | 0 | 0 | 0 | 0 | | | 6 1 | 1000 | -000 | 8 H H 8 | -000 | | | $0_{\mathbf{u}}$ | -100 | 1700 | -1100 | 1100 | | $\widehat{}$ | ф | 1111 | 0120 | 0004 | 0111 | | ont. | rd . | 1
0
6
7 | 452
425 | 2002 | 1045 | | Table V. (cont.) | æ | 422 | | | | | <u>\</u> | A | 25.2 | 2222 | 222 | ~~~ | | ble | 7 | 26
26
26
26 | 502
502
502
502 | ∞ ∞ ∞ ∞ | 7777Y
88888 | | Tal | ۵ | 4444 | 70
70
70
70 | 105
105
105 | 210
210
210
210 | $(\alpha=a+b/D)$ <u>Table VI.</u> | D | p _i | $^{ u}$ i | $\lambda_{\mathbf{i}}$ | $(i \in I_{\overline{U}}^*)$ | |-----|----------------|-----------|------------------------|------------------------------| | 2 | 2 3 5 | 3 0 0 | 1.5 0 | 0 | | 6 | 2 3 7 | 3 1 0 | 1.5 0.5 | 0 | | 7 | 2 5 7 | 2 0 1 | 1 0 | 0.5 | | 10 | 2 5 7 | 3 1 0 | 1.5 0.5 | 0 | | 14 | 2 3 7 | 3 0 1 | 1.5 0 | 0.5 | | 15 | 2 3 5 | 2 1 1 | 1 0.5 | 0.5 | | 21 | 2 3 7 | 2 1 1 | 0 0.5 | 0.5 | | 30 | 2 3 5 | 3 1 1 | 1.5 0.5 | 0.5 | | 70 | 2 5 7 | 3 1 1 | 1.5 0.5 | 0.5 | | 105 | 3 5 7 | 1 1 1 | 0.5 0.5 | 0.5 | | D | α | n_{ϵ} | n
π | n ₂ | n ₃ | n ₅ | n ₇ | I _U | | ı* | N | κ | c* | |----|----------------|----------------|--------|----------------|----------------|----------------|----------------|----------------|---|-----|---|---|------------------------| | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 3 5 | 2 | 3 5 | 3 | 0 | 3.190×10 ²⁸ | | | √2 | 0 | 0 | 1 | 0 | 0 | 0 | 3 5 | 2 | 3 5 | 2 | 0 | 3.190×10 ²⁸ | | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 3 7 | 2 | 3 7 | 3 | 0 | 2.712×10 ²⁶ | | | √ 6 | 0 | 0 | 1 | 1 | 0 | 0 | 7 | 2 | 7 | 2 | 0 | 4.604×10 ²² | | | 2+√6 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 2 | 3 | 2 | 0 | 2.090×10 ²² | | | 3+√6 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 3 | 3 | 0 | 2.090×10 ²² | | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 5 7 | 2 | 5 7 | 2 | 0 | 1.065×10 ³⁰ | | | √ 7 | 0 | 0 | 0 | 0 | 0 | 1 | 2 5 | 2 | 5 | 2 | 0 | 2.146×10^{28} | | | 3+√7 | 1 | 0 | 1 | 0 | 0 | 0 | 5 7 | 2 | 5 7 | 1 | 0 | 1.065×10 ³⁰ | | | 7+3√7 | 1 | 0 | 1 | 0 | 0 | 1 | 5 | 2 | 5 | 1 | 0 | 2.146×10 ²⁵ | | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 5 7 | 2 | 5 7 | 3 | 0 | 3.214×10 ²⁹ | | | √ 10 | 0 | 0 | 1 | 0 | 1 | 0 | 7 | 2 | 7 | 2 | 0 | 8.414×10 ²⁴ | | | -2+√1 0 | -1 | 1 | 1 | 0 | 0 | 0 | 5 7 | 2 | 5 7 | 2 | 1 | 3.214×10 ²⁹ | | | 5-10 | -1 | 1 | 0 | 0 | 1 | 0 | 2 7 | 2 | 7 | 3 | 1 | 8.414×10 ²⁴ | | 14 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 3 7 | 2 | 3 7 | 3 | 0 | 4.791×10 ²⁶ | | | √ 14 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 2 | 3 | 2 | 0 | 4.347×10 ²² | | | 4+√14 | 1 | 0 | 1 | 0 | 0 | 0 | 7 | 2 | 7 | 2 | 0 | 8.143×10 ²² | | | 7+2√14 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | | 3 | 0 | 8.371×10 ¹⁸ | | <u>Table</u> | VI. | (cont | ŧ.) | |--------------|-----|-------|-----| | D | | α | | | D | α | $^{\mathrm{n}}_{\epsilon}$ | n
π | n ₂ | n ₃ | n ₅ | n ₇ | | I. | U | | I _U * | N | κ | c* | |-----|--------------------------|----------------------------|--------|----------------|----------------|----------------|----------------|---|----|---|---|------------------|---|---|------------------------| | 15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 5 | 2 | 3 5 | 2 | 0 | 2.144×10 ²⁸ | | | √ 15 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | | | 2 | | 2 | 0 | 9.427×10 ¹⁹ | | | 3+√15 | 1 | 0 | 1 | 1 | 0 | 0 | 5 | | | 2 | 5 | 1 | 0 | 1.694×10 ²⁴ | | | 5+√15 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | | | 2 | 3 | 1 | 0 | 1.035×10 ²⁴ | | | 1+√15 | 0 | 1 | 1 | 0 | 0 | 0 | 3 | 5 | | 2 | 3 5 | 1 | 1 | 2.144×10 ²⁸ | | | 15+√15 | 0 | 1 | 1 | 1 | 1 | 0 | | | | 2 | | 1 | 1 | 9.427×10 ¹⁹ | | | 6-√15 | -1 | 1 | 0 | 1 | 0 | 0 | 2 | 5 | | 2 | 5 | 2 | 1 | 1.694×10 ²⁴ | | | - 5+2 √ 15 | -1 | 1 | 0 | 0 | 1 | 0 | 2 | 3 | | 2 | 3 | 2 | 1 | 1.035×10 ²⁴ | | 21 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 3 | 7 | 2 | 3 7 | 1 | 0 | 1.898×10 ²⁶ | | | 2√21 | 0 | 0 | 2 | 1 | 0 | 1 | 2 | | | 2 | | 0 | 0 | 2.640×10 ¹⁸ | | | 3 +√ 21 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 7 | | 2 | 7 | 1 | 0 | 3.220×10 ²² | | | 7 +√ 21 | 1 | 0 | 2 | 0 | 0 | 1 | 2 | 3 | | 2 | 3 | 1 | 0 | 1.435×10 ²² | | 30 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 5 | 2 | 3 5 | 3 | 0 | 4.141×10 ²⁸ | | | √30 | 0 | 0 | 1 | 1 | 1 | 0 | | | | 2 | | 2 | 0 | 2.022×10 ²⁰ | | | 5 + /30 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | | | 2 | 3 | 3 | 0 | 2.217×10 ²⁴ | | | 6+√30 | 1 | 0 | 1 | 1 | 0 | 0 | 5 | | | 2 | 5 | 2 | 0 | 3.276×10 ²⁴ | | | 3+√30 | 0 | 1 | 0 | 1 | 0 | 0 | 5 | | | 2 | 5 | 3 | 1 | 3.276×10 ²⁴ | | | 10+/30 | 0 | 1 | 1 | 0 | 1 | 0 | 3 | | | 2 | 3 | 2 | 1 | 2.217×10 ²⁴ | | | -4+√30 | -1 | 1 | 1 | 0 | 0 | 0 | 3 | 5 | | 2 | 3 5 | 2 | 1 | 4.141×10 ²⁸ | | | 15–2√30 | -1 | 1 | 0 | 1 | 1 | 0 | 2 | | | 2 | | 3 | 1 | 2.022×10 ²⁰ | | 70 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 7 | 2 | 5 7 | 3 | 0 | 3.229×10 ³⁰ | | | √ 70 | 0 | 0 | 1 | 0 | 1 | 1 | | | | 2 | | 2 | 0 | 2.115×10 ²¹ | | | 25+3√70 | 1 | 0 | 0 | 0 | 1 | 0 | 7 | | | 2 | 7 | 3 | 0 | 8.482×10 ²⁵ | | | 42+5√70 | 1 | 0 | 1 | 0 | 0 | 1 | 5 | | | 2 | 5 | 2 | 0 | 7.003×10 ²⁵ | | | 7 +√ 70 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | | | | 5 | 3 | 1 | 7.003×10 ²⁵ | | | 10+√70 | 0 | 1 | 1 | 0 | 1 | 0 | 7 | | | 2 | 7 | 2 | 1 | 8.482×10 ²⁵ | | | -8+√ 70 | -1 | 1 | 1 | 0 | 0 | 0 | 5 | 7 | | | 5 7 | 2 | 1 | 3.229×10 ³⁰ | | | 35-4√70 | -1 | 1 | 0 | 0 | 1 | 1 | 2 | | | 2 | | 3 | 1 | 2.115×10 ²¹ | | 105 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 5 | 7 | 3 | 5 7 | 1 | 0 | 4.533×10 ²⁹ | | | 2√105 | 0 | 0 | 2 | 1 | 1 | 1 | | | | | | 0 | 0 | 4.295×10 ¹⁶ | | | 20+2√105 | 1 | 0 | 2 | 0 | 1 | 0 | | 7 | | | 7 | 1 | 0 | 1.690×10 ²⁵ | | | 42 +4√1 05 | 1 | 0 | 2 | 1 | 0 | 1 | 5 | | | 5 | | 1 | 0 | 8.655×10 ²⁰ | | | 7 +√1 05 | 0 | 1 | 2 | 0 | 0 | 1 | 3 | 5 | | 3 | 5 | 1 | 1 | 1.396×10 ²⁵ | | | 15+√105 | 0 | 1 | 2 | 1 | 1 | 0 | 7 | | | 7 | | 1 | 1 | 1.049×10 ²¹ | | | -9+√ 105 | -1 | 1 | 2 | 1 | 0 | 0 | | 7 | | | 7 | 1 | 1 | 2.485×10 ²⁵ | | | 35-3√105 | -1 | 1 | 2 | 0 | 1 | 1 | 3 | | | 3 | | 1 | 1 | 5.880×10 ²⁰ |