CHAPTER 8. THE THUE EQUATION.

Acknowledgements. The research for this chapter has been done in cooperation
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and de Weger [1987]). See also Tzanakis [1987] and de Weger [1987b].

8.1. Introduction.

Let F(X,Y) € Z[X,Y] be a binary form with integral coefficients, of
degree at least three, and irreducible. Let m be a nonzero integer. The

diophantine equation
F(X,Y) = m

in X, Y € Z is called a Thue equation. It plays a central role in the
theory of diophantine equations. In 1909 Thue proved that it has only
finitely many solutions (cf. Thue [1909]). His proof was ineffective. An
effective proof was given by Baker [1968]. See Chapter 5 of Shorey and
Tijdeman [1986] for a survey of results on Thue equations. By using Lemma 2.4
in Baker’'s argument, we derive a fully explicit upper bound for the solutions
of the Thue equation. Then we show how the methods developed in Chapter 3 can
be used to actually find all the solutions of a Thue equatiom. Our method
works in principle for any Thue equation, and in practice for any Thue
equation of not too large degree, provided that some algebraic data on the

form F are available.

Variants of the method we use here have been used in practice to solve Thue
equations by Ellison, Ellison, Pesek, Stahl and Stall [1975], Steiner [1986],
Pethé and Schulenberg [1987}, and Blass, Glass, Meronk and Steiner [l987a],
[1987b], When determining all cubes in the Fibonacci sequence, Pethé [1983]
solved a Thue equation by the Gelfond-Baker method, but with a completely

different way to find all the solutions below the upper bound.
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8.2. From the Thue equation to a linear form in logarithms.

In this section we show how the solution of the general Thue equation implies
an inequality involving a linear form in the logarithms of algebraic numbers

with rational integral coefficients (unknowns). Let

n . -
F(X,Y) = ¥ fi~x“'1-y1 € Z[X,Y]
-0

1

be a binary form of degree n > 3 and let m be a nonzero integer. Consider

the Thue equation
F(X,Y) = m , (8.1)

in the unknowns X, Y€ Z . If F 1is reducible over @ , then (8.1) can be
reduced to a system of finitely many equations of type (8.1) with irreducible
binary forms. For such equations of degree 1 or 2 it is well known how to
determine the solutions. Therefore we may assume from now on that F is
irreducible over @ and of degree = 3 . Then we may assume from now on that
F is irreducible over @ . Let g(x) = F(x,1) . If g(x) = 0 has no real
roots then one can trivially find small upper bounds for max(|X],|Y]|) for

the solutions (X,Y) of (8.1). Therefore, throughout this chapter we suppose

that the algebraic equation g(x) = 0 has at least one real root. We number
its roots as follows: 5(1), §<S) ( s =21 ) are the real roots and
§(S+1) = §(s+t+1), o, E(s+t) = §(S+2t) are the non-real roots, so that we

have t ( > 0 ) pairs of complex-conjugate roots, and s + 2:-t =n .

Consider the field K = Q(¢) , where g(¢) = 0 . We will define three

positive real numbers Yl < Y2 < Y3 , that will divide the set of possible

solutions (X,Y) of (8.1) into four classes:

I) the ’‘very small’ solutions, with Y] =< Y1 . They will be found by
enumeration of all possibilities,
I1) the ’'small’ solutions, with Y1 < |Y| = Y2 . They will be found by

. . : - i
evaluating the continued fraction expansions of the real §( )'s

II1) the 'large‘' solutions, with Y, < |Y| =Y They will be proved not to

2 3
exist by a computational diophantine approximation technique,

1V) the ’'very large' solutions, with |Y| > Y They will be proved not to

3
exist by the theory of linear forms in logarithms.

The value of Y3 follows from the Gelfond-Baker theory of linear forms in

logarithms. The value of Y2 follows from the restrictions that we use as we
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try to prove that no 'large’ solutions exist. The value of Yl follows from

Lemma 8.1 below. This lemma shows that if |Y| 1is large enough then X/Y is
'extremely close’ to one of the real roots 6(1) In a typical example Y3
50

may be as large as 1010 , Y2 as large as 1010, and Y1 as small as 10.

LEMMA 8.1. Let X, Y€ Z satisfy (8.1). Put 8 =X - €Y ,

Zn_l-!m| 1/n
min Ig'(5(5+1))|~ min |Im f(s+1)| if t=1
YO = 1<i<t l<i<t s
1 if £=20
n-1
2 - |m] : .
: 1 . (i) ()
c, = . , (1) , C, == min |& -£ |,
L min jg’ (€ 7)] 22 1cicjen
1<i=<s
B L~ y1/(n-2)
Y, = max [ Y, [[a c,) ] ]
(i). If |Y| > YO then there exists an io e (1, ..., s} such that
(iy)
0 -(n-1
18 01 <o ym Y
18 > C,r 1Yl for ie (1, ...,mn), i=ig
(ii). If |Y| > Yl then X/Y is a convergent from the continued fraction
(io)
expansion of £
(o) (1)
Proof. Let io e {1, ..., n} be such that |8 | = min |8 | We
l<i=n
have from (8.1)
n .
i
151 111851 = i
i=1
(1)
By the minimality of |B | we have for all i
S () S () . (iy)
i 0 i 0 i 0 i
MO AR IR A N IR R IR AR I N A
Hence (81 = C, Y| . Further,
(i) : . (i,) -1
0 m iy, -1 1 i 0
o - s < e [Fve - |]
ol iq 1ol g (2
0 0
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n-1

n—l'

- 2 " |m| - 2 [mf
. (i,) (i)
i 0 -1 0 -1
|£o- T e O™ e Ty
iri
0
Now, if io > s (and hence t > 1 ) then, by the definition of YO ,
. (i)
i 0 -1
X - ! 0)| s O 2w
Y Yy - (i) - 1Y
e )]
Y n :
< [_Q—J . min  (Im &P
lYl s+l<i<s+t
which is impossible if |Y| > YO Hence io < s , and now (i) follows at
once. Moreover, if |Y| > Y1 , then
(i) (i)
X 0 0 -1 -n 1 ,n-2 n 1 -2
T-¢ T -8 DT sep T e T s Ly T
i) (i)
and thus | % - 9 < §-|Y[_2 , since ¢ ° is irrational. Now (ii)
follows from a well known result on continued fractions, cf. (3.6). O
Now let Y| > Y1 and iO e {1, ..., s )} as in Lemma 8.1. Choose
i, ke {1, ., n } such that iO’ j, k are pairwise distinct and either
i, ke(l, ..., s) or j+t=%k (so that ¢ _ )y pue further the
choice of j, k 1is free. By ﬂ(l) =X - Y~5(1) for 1 = io, j, k we get,
on eliminating the X and Y ,
(i) ; : (i,) (iy) :
0 k k 0 k 0
B -[f(J)—ﬁ( )] + ﬁ(J)-(f( )—f ) + 5( )'[5 ‘f(J)J -0,
or, equivalently,
i . . i
o)y L w G o
£ —£ B 4. ¢ £ i
i) G5 CHNNRNGY (8.2)
0 k k 0
(000 B (0, B
By Lemma 8.1, the right hand side of (8.2) is ‘extremely small’. Put, if
i, ke {1, ..., s} (let us call it ’'the real case’)
i .
A UENEPIGS!
A=log | gy NG
RO A
and if j, ke { s+1, ..., s+2:t ) (let us call it 'the complex case’)
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(k)

(i) Gy |
e 00 B

where, in general, for =z € € , Log(z) denotes the principal value of the
. (k) _ ()
logarithm of =z (hence -n < Im Log(z) <« ). By ¢£ = £ we have
Ae€eR and |[A] =7
The following lemma shows how small |A| 1is.
LEMMA 8.2. Put
RUTR
C, = max T~ ,
i ki wi i (ip (i3
1772 73 "1 ¢ - £
* 1/n
Y2 = max [ Yl’ {(2~C1-C3/C2) w ]
*
If Y| > Y2 then
1.39-C.-C
’ 1 73 -n
|A] < ————= 1Y
2
*
Proof. Consider first the real case. From Yy > Y2 and Lemma 8.1 it
follows that the right hand side of (8.2) is absolutely less than % and,
consequently,
i .
Y gy w0
¢ - gt
(i) () ﬂ(j>
3 -

It follows that the left hand side of (8.2) is equal to eA—l , and now (8.2)

implies, in view of Lemma 8.1 and the definition of C

3
) —-(n-1) )
le*-1] < ¢ S O c3-|Y;_“
3 C2-|Y] C2
On the other hand, |eA—1| < % implies (cf. Lemma 2.2)

[A] < 2-1og 2-1eM-1] < 1.39- 1)

which proves our claim in the real case.
in

In the complex case the left hand side of (8.2) is equal to e -1 , and, as

in the real case, we derive
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C.-C

ety « L2yl
C 2
2
Since |eP-1] = 2-|sin A/2] , it follows that |sin A/2| < % , and therefore
by Lemma 2.3
Al < 2—2% st az2) = —A ety < 1021y,
sin 1/4 sin 1/4
which proves the lemma in the complex case. O

In the ring of integers of the field K (as well as in any other order R
of K ) there exists a system of fundamental units €1s cen €L where
r =s + t - 1 (Dirichlet’s Unit Theorem). Note that since F {is irreducible
and we have supposed s > 0 , the only roots of unity belonging to K are
+1 . We shall not discuss here the problem of finding such a system (for
efficient methods see e.g. Berwick [1932], Billevig [1956], [1964], Pohst and
Zassenhaus [1982}, Buchmann [1986], [1987]). We simply assume that a system
of fundamental units is known. On the other hand, there exist only finitely
many non-associates Byv e B, in K such that fO~N(pi) = m for

i=1, ..., v . (We use N(-) to denote the norm of the extension K/Q .) We

also assume that a complete set of such pi's is known. Let M be the set

of all §-pi , where ¢ 1is a root of unity in K . (In the important case
|f0| = |m| =1, it is clear that M = { -1, 1 } ). Then, for any integral
solution (X,Y) of (8.1) there exist some u € M and aj, ..., ay e 7 ,
such that
a a
1 r
B = Breg €L

Thus, the initial problem of solving (8.1) is reduced to that of finding all

a a
integral r-tuples (al,...,ar) such that Boeg ~...-err for some u € M be

of the special shape X - Y-£ , with X, Y € Z . As we have seen, X and Y
can be eliminated, so that we obtain (8.2). Thus the problem reduces to

solving finitely many equations of the type

. : . (i )~a.,
(i . (x)) %1 . (i) 0 %1
g V) 0 e L S UL B
(i) Gy U 0 ) (i) Gy U )
¢ 0 -E(k) M i=1 € E(k)—§ 0" u i=1 €

(the so-called ‘unit equation’). In the real case we have
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(i) .
07 (3 (k) r
A = log €(1 )_6 . ”(j) + E aivlog tj) , (8.3)
¢ 0 —§(k) b i=1 €
and in the complex case
g(io)_g(j) “(k) E Eik)
A = Arg r . - + a,-Arg - + a, 27 , (8.4)
(10)_§(k) w3 I IS 2

£

1

with a; € Z , and -m < Arg(z) < n for every z € C . Note that A in the

real case, and 1i:A in the complex case, is a linear form in (principal)

logarithms of algebraic numbers, where the coefficients a; are integers.

The Gelfond-Baker theory provides an explicit lower bound for |A| in terms
of max|ai] . Using this in combination with Lemma 8.2 we can find an
explicit upper bound for max|ai| . This is what we do in the next section.

8.3. Upper bounds.

Let A = max |a.| . First we find an upper bound for A in terms of |Y|
I<i=r
LEMMA 8.3. Let I = { hl’ . hr yc{1l, ..., n} . Put
(h.)

1
Up = (logle, ljlsiSr,lstsr ’

(where 1 indicates a row and { a columm of the matrix),

-1 -1 s
U = (u,,) , N[U "] = max Z ju.
L e I l<i<r £=1 it
Put also
_ min , (1) _ max (i)
L P L P P L
ueM pueM
L max ﬁ(ll)—ﬁ(IQ)
2 1<i.<i Snl I
c - 172
4 B_ ’
. . -1 -1
C. = min [ (n-1) min N[{U_"], max N[U_7] ]
5 I 1
1 1
Then, for
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1/n
1Yl > max (¥, 2-1m>7, w,/c, ),

we have
A< Cs-log[CA~|Y|) .
! ar
Proof. By B8 = preg e T we have
(b)) (h)
loglp = /u | a
= U . (8.5)
a
(h) (B r
log|p /B |
On the other hand, for every he€ (1, ..., n} , using the end of the proof
of Lemma 8.1,
(i) (i)
h h 0 0 h
1B = xey e ™ < xve O v ygge O™
i)
1 ) 0" .(h)
< ooy tIYEIE D 60
(i) (1)
1 max 1 2
< [ P 1<i, <i $n|€ - l ]'lYl ’
172
and therefore
ﬂ(h)
L) <ClY| for h=1, ..., 0.

Note that CA-|Y| > 1 . Indeed, by

n .
i m
IR LY
i=1 0
it follows that min [p(1)| < |m|1/n , hence p =< ]mll/n . Therefore
1<i=<n
(i) (1)
1 max 1 2 -1/n [ Y|
C, Yt = (= + ,_. 0 _|€ -£ [ J-1Y]-m] > il s
4 2 1511<125n 2]m|1/n
Then,
(h)
log ;?F7 < log(C, IY]) for h = 1,...,n, log(c,-|Y|]) >0 . (8.6)
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Next we show that

(1)

B~ -1y - . { -
log ol < (n-1) 1og[C4 Y[} for i=1, ..., n. (8.7)
7
. . . . . : (i), (1)
Indeed, in view of (8.6), a stronger inequality is true if |8 e | =1
Suppose now that |ﬂ(l) (1)| <1l . By
n h
I "Ehi !
h=1|p
it follows that
(1) (i) z ﬂ
log (1) ‘ = -log NE) log _?_7 < (nwl)~log[C4-|Y|J ,
h#l #
in view of (8.6). Now the inequality
. -1
A < (n-1) -min N[UT"}-log(C,|Y])
I I 4
follows from (8.5), (8.7), the definition of N[U;l] and the fact that, as
we have not put so far any restriction on I , this could be chosen so that

N[U;l] be minimal. It remains to show that

A < max N{U
1

teg(e, 1D

Choose I such that i. ¢ I . Then, by Lemma 8.1, for every h e I |,
0
(h)/#(h)

|8 | > C2-]Y|/u+ > 1 and now, in view of (8.6),
(h)
Log =y | < log(C,-1Yl)
I
which implies our assertion. O

Lemmas 8.2 and 8.3 immediately yield

LEMMA 8.4. Put

n
1.39-C.-C,-C
: 17737 . * 1/n
Cg = ————— ., Y, =max (Y, 2-|n|

. B, /C, )
’ + 72

If |Y| > Yé then

A < CG-exp(%E-AJ .
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Next we apply Lemma 2.4 (Waldschmidt). It yields in the real case (assuming

that A = 0 )

A > exp[~c7-<1og A+ 08)) , (8.8)
and in the complex case this holds when A is replaced by A’ - max |a |
O<i=<r
The precise values for C7 and C8 are given in Section 2.3. It should be

noted that in the complex case a makes now its appearance, while it was

0
not present in Lemmas 8.3 and 8.4. In order to obtain an upper bound for A ,
we must find an upper bound for A’ in terms of A . Indeed, using the
relation

Arg(zl‘zz) = Arg(zl) + Arg(zz) + k20 , ke { -1, 0, 11} ,

we find from (8.4) and the proof of lemma 8.2 that IaO] < % + %-r-A + |Al/2n

<1+ 71r-A=<r-A if A = 2 . Thus we may apply (8.8) in both cases with A

if we replace CB by Cé , where
C8 = CS in the real case,
Cé = C8 + log r in the complex case.

We can now give an upper bound for A .

LEMMA 8.5. Put

2-C5 CS-C7
cg=——n—-[1og Co + C,Cy + C,-log — )
If Y} > Y2 , then A< C9
Proof. As we have seen in the proof of Lemma 8.2, |eA—1| < % in the real
iA 1 (iO)
case, and Je -1} < Py in the complex case. Note that 8 » 0 . Hence
(8.2) implies A = 0 . Therefore Lemma 8.4 and (8.8) yield
CS
A< H—'( log C6 + C7~C8 + C7-log A ) .
The result now follows from Lemma 2.1. 0
Remark. From this upper bound for A an upper bound for 1Y can be
derived, thus a value for Y3 (cf. Section 8.2). We shall not do this. Note
that Yé (cf. Lemma 8.4) is not necessarily equal to Y2 (cf. Section 8.2).
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8.4. Reducing the upper bound.

We are now left with a problem of the following type. Let be given real

numbers §, R “q (q=22, the case q =1 1is trivial). Write
A=6+ a) by + ...+ aq~pq s
where the ai’s belong to Z , and put A = max |a | . If Kl’ KZ’ K3 be
1<i<q
given positive numbers, then find all q-tuples (al,...,aq) e 24 satisfying

|Al < Kj-exp(-K,-A] , A <K (8.9)

3

In our case, it follows from (8.3) or (8.4) how to define q, § and the

ui’s , and from Lemmas 8.4 and 8.5 how to define Kl’ K2, K In general,

3

Kl and K2 are 'small’ constants, whereas K3 is 'very large'. Put

so that A =§ + A, . We apply the methods of Chapter 3 to problem (8.9).

Below we distinguish three cases. In the first two we suppose that the pi's
are QO-independent.

(i). Let § =0 , so that A = AO . Then the linear form is homogeneous, and
we apply the method of Section 3.7.

(ii) Let § = O . Then the linear form is inhomogeneous, and we apply the
method of Section 3.8.

(iii). Suppose now that the ui’s are Q-dependent. Let r be the
approximation lattice for the linear form A , as defined in Section 3.7.
Then we expect the lower bound for x| (xeT , x =0 ) 1in general to be
'very small’, since the vector having as coordinates the coefficients of the
dependence relation will give rise to a very short vector in the lattice. So

the reduction process, as applied in the two previous cases, will not work.

In such a case we work as follows. Let M be a maximal subset of
(pl,...,pq) consisting of Q@-independent numbers. With an appropriate choice
of subscripts we may assume that M = { Bps oo up } , P < q . Then we can
find integers d > 0 and dij for 1 <1i=<p, p+tl = j =< q such that

p .

d-pj = .Z dij-pi for j =p+l, ..., q

i=1

(These numbers d, dij can be found as coordinates of extremely short

vectors in reduced bases). On the other hand, (8.9) is equivalent to
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[A*] < Kl-exp[—K2-A) . A <Ky, (8.10)
where A’ = d-A and Ki - d-K1 . Now, with §' = d-§ and
q
a; = d-a, + Y. a,
jop+1
we obtain
p
e
i=1
Put D = max [ |d], |dij| :1=<i<p, ptl<j=<q) . Then
|a£] < (q-p+1) DA for i=1, ..., p
Therefore, if we put A' = max |a£| , then A’ < (q-p+1)-D-A , and (8.10)
1<i<p
implies
[A"| < Kj-exp(-Kj-A') , A’ < KS (8.11)
where
Al =68 + al-ul + ...+ ap‘“p R Kl = d‘K1 R

Ky = Ky/(q-14p)-D , Kj = (q-p+1) K,

i

Now, to solve (8.11) we apply the reduction process described in (i) or (ii),

depending on whether &' = 0 or 6§’ = 0 , and maybe more than once, if
necessary, until we find a very small upper bound for A’ . After having
found all solutions (ai,...,aé) of (8.11), we have a lower bound L > 0
for |A’|] . It is reasonable to expect that L 1is not 'extremely small’

1
make JA" "extremely small’. Now combine jA'l = L with the first

because the integers a . aé being 'small’ in absolute value cannot

inequality of (8.10) to get
K
1 1
A< E;-log[z—)

Since L 1is not 'very small', as argued heuristically, the above upper bound

for A is 'small’.

Returning now to the general case, we point out that if the reduced upper

bound for A (found after some reduction steps as described above) is not



small enough to admit enumeration of the remaining possibilities in a
reasonable time, then it might be necessary, or at least advisable, to use
the technique of Fincke and Pohst, cf. Section 3.6. However, when solving a
Thue equation, and not only an inequality for a linear form in logarithms, it

may be better to avoid this method, and to use continued fractions of the

roots 5(1) In practice we can search for the solutions (X,Y) of (8.1)
satisfying Y1 < Y] = C as follows, referring to Lemma 8.1. Here e.g.
Cc = Y2 , and we can imagine C here as being a 'large’ constant compared to
Y1 , but not 'very large’ (cf. the introduction of Yl’ Y2 in Section 8.2).
) (iy)
Let £ be a rational approximation of ¢£ , such that
(i)
= 0 1
1£-¢ I < 5 - (8.12)
6-C
Since |Y} > Yl , X/Y must be a convergent, pk/qk say, from the continued
(i)
fraction expansion of 13 0 . Denote by ay, Ay, g, .- the partial
quotients in this expansion. First we claim that a1 > 3 . Indeed, we have
by (3.5)
1 1 (o) Py L !
= 5 < 1€ - a‘l = 1€ -3l = o
(a1 *2) - 1Y1° (a,,+2) g K Y|
If a1 = 1 or 2 , then we would have |Y|n_2 < A-Cl , which is absurd,
. 1/(n-2)
since {Y| > Y1 > (4-01) . Thus, a1 > 3 , and by (3.5) we have
(ig) 1 L
]50—~15|<a 4253.2'
R k1l R"
Therefore,
L P o ) o) P 1 1
Ig—‘*lslf_g I+|E _C{_l< 2+ 25 2
A k  6C" 3.q 2q

and this means that pk/qk is in fact a convergent from the continued

fraction expansion of £ too. Moreover, in view of the inequalities

1 o) pe G 1
e LI e
(e, 172) gy koY gyl
a ,p must be sufficiently large compared to q namely
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n-2
lagl
a > ———— - 2 . (8.13)

k+1 C1

This inequality can be checked easily for all k such that <C

9

(i)
To sum up, we propose the following process for every real root ¢£ 0 for

i =1, ..., s (note that i is a priori not known). (1) Compute a

0
_ (i)
rational approximation € of ¢ satisfying (8.12) (a truncation of its

decimal expansion will do). (2) Expand E into its continued fraction with

partial quotients aO, al, a2, e, ak+1 and convergents pi/qi for all
i=1, ..., kK with q < C < U1 (3) Test all these convergents for the
conditions (8.13) and F(pi,qi) = m . Concerning this last test, note that if
X/Y = pi/qi , then X = Z-pi , Y = Z-qi for some Z € Z with 2" | m

This simple observation excludes in general most of the reducible quotients

X/Y , and all of them if m is an n-th-powerfree integer.

Having tested for all solutions in the range |Y| < C we may suppose that
|Y| > € . For such solutions (X,Y) we can obtain a lower bound for the

corresponding A as follows (the idea is due to A. Pethé, cf. also Section 1

of Blass, Glass, Meronk and Steiner [1987b]). For every (i,j) € {1,...,r} x
N VI
(1,...,n} let wij be the number +1 or -1 for which ]ng)[ U | R
r
and put E, = ﬂ (J) . Then
J i=1
4y S I A
I P T | P B o
i=1 J

and hence for any pair jl’ j2 with j1 #~ j2 we have

: . A A
ﬂ(Jl)—ﬁ(Jz)I Ej1 + Ej2
G PO G 7 A C IR G PO
e Ve le 71 -

and from this we can find a lower bound for A , if we know that |[Y| > C

0f course, for an other pair we may find a different lower bound,

jl’ j2
and therefore we can take the larger one.
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.5. An application: integral points on the elliptic curve
3

8
y2 =x - 4:x + 1

In this section we prove, as an application of the general theory described

in the previous sections, the following result.

THEOREM 8.6. The elliptic curve
ek cax 41 (8.14)
has only the following 22 integral points:

(x,%y) = (=2,1), (-1,2), (0,1), (2,1), (3,4), (4,7), (10,31),

(12,41), (20,89), (114,1217), (1274,45473)

We prove this theorem in two main steps. First, we reduce the problem to the
solution of two quartic Thue equations. Then we solve these equations using

the general theory developed in the previous sections.

Let L be the totally real field Q(y) , where

¢3 -4p+1=0
Let the conjugates of Y be ¢(1) = 0.25%..., ¢(2) = -2.114...,
¢<3) = 1.860... . From a table of Delone and Faddeev ([1964], p. 141) we see
that the class number of L is 1, its ring of integers is Z[¢¥] , its
discriminant is 229, and a pair of independent units is ¥, 2 - % . From

Table I of Buchmann {1986} we see that -7 + 2-¢2, 2.y + ¢2 is a pair of
fundamental units in Z[y] . Since -7 + 2~¢2 = —¢-1-(2—¢) and
2.9 + ¢2 = (2—1,b)-1 we see that ¢, 2 - ¥ 1is also a pair of fundamental

units in Z[¥]

The equation (8.14) of the elliptic curve can be written as

R G N T S S LI (8.15)

and the factors on the right hand side are relatively prime. Indeed, if =«

were a common prime divisor of them, then = would divide

(2 xpt Bm) ) - (x+29)(x-%) =3¢ -4,
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which is prime, since its norm is -229. Therefore we would have that =« is a
unit times this prime, and then by (8.15), X - P = unitx(3-¢2—4)xsquare

Take norms, then we get y2 = +229xsquare , which is clearly impossible.
Now (8.15) implies
2

x -y =+t e’ aezyl, i, jel0, 1) . (8.16)

Since (8.14) is trivial to solve for x < 0 (the only solutions with x < 0

are the first three pairs stated in the theorem), we may assume that x 2 1

Since w(l) = 0.254... , we see that the minus sign in (8.16) is impossible.
Then, by ¢<2) = -2.114... , 1 % 1 . We conclude therefore that
j 2.2 .
X — %= (2-¢9) (utv-p+wp" )", u, v, welZ , je {0, 1) . (8.17)
First case: j =10 . Then (8.17) implies, on equating corresponding

coefficients in both sides,
X = u2—2~v-w, w2—2~u~v—8-v-w =1, v2+4~w2+2-u-w =0 . (8.18)

Note that w 1is odd and v 1is even, hence 4 | 2:-u-w , so u is even. Put

u =2 U, Vo= 2 vy The last equation of (8.18) now reads
w2 +u,cw+ v, =0
1 1
Consider this as a quadratic equation in w . Its discriminant must be a

square, 22 say. Then

Note that u, and =z have the same parity. We may assume u 2 0

1
First suppose that uy and z are even. Since w2 + uy W + v% =0 and w
is odd, we find u, = 2 (mod 4) , and v is odd. Put u, = 2-u, ,
21 2 5 1 1 2
z =2 zy - Then uy, - vy o=z, where u, and v, are odd. By u, z 0

there exist m, n € Z such that

It follows that
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u = 4-(m2+n2) , v o= 2-(m2—n2) , W = —(min)2

Since the sign of =z , and thus that of n , is of no importance, we may
2 . . : .
assume w = —(mtn) . After substitution in the second equation of (8.18) we

obtain the Thue equation

/
m' o+ 36-m3-n + 6~m2~n2 - 28-m~r13 + na =1

The left hand side can be factored as

(m+n ) -( m3 + 35-m2~n - 29-m4n2 + n3 ),
and therefore it can be solved very easily. 1Its only solutions are
*(m,n) = (1,0), (0,1) . They lead to *(u,v,w) = (4,2,-1), (4,-2,-1) , and
then by (8.18) we find x = 20, 12 respectively, which furnish the solutions
(x,*y) = (20,89), (12,41) for (8.14).

Secondly, we suppose that uy and z are odd. Then vy is even, so by
uy > 0 there exist m, ne€ Z with
u1 = m2 + n2 R 2~Vl =2mn , z = m2 - n?

It follows that

2.2
u=2-(m+n") , v=2-mn w = -m or W = -n

s

2 . . A .
We may assume that w = -m~ . Substituting this in the second equation of

(8.18) we find the Thue equation

mA + 8-m3-n - 8~m~n3 =1
The left hand side is again reducible. The only solutions, as is easily seen,
are *(m,n) = (1,0), (1,1), (1,-1) . Since m and n cannot have the same
parity, only the first pair is accepted. It leads to (u,v,w)y = (2,0,-1) ,
and hence to (x,*y) = (4,7) for (8.14).

Second case: j =1 . Then, equating the coefficients in (8.17) we get

X = 2-u2 + v2 + 4~w2 + 2-uw - 4veow (8.19)

9 (8.20)

{ u2 + 4-v2 + 18vw2 ~4u-v+ 8uw-18v.w=1,
L 2-v2 + 9w - 2uv+buw-~- 8vw=20
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The first relation of (8.20) can be replaced by
2
u - 2vew =1 . (8.21)

Note that u 1is odd. Put z = v — 2-w . Then the second equation of (8.20)

yields

w o= 2-z-(u-z)

First we suppose that z is odd. Then there exist m, n € Z such that

z = m2 , U=z =2 n2 ,
where we use that u= 0 and (u,w) = 1 . Thus, choosing signs properly,
u = m2 + 2-n2 , VvV = m2 +4-mn , w=2-mn .

Substituting this in (8.21) we obtain the Thue equation

ma - 4-m3'n - 12-m2~n2 + A-nA =1 . (8.22)

In Theorem 8.7 below we prove that this equation has only the solutions
+(m,n) = (1,0) , leading to (u,v,w) = (1,1,0) , and finally for (8.14) to
(x,ty) = (3,4)

Secondly we suppose that =z 1is even. Then there exist m, n € Z with

Thus, choosing signs properly, we find
u = 2~m2 + n2 , V= 2~m2 + 4-mn, w=2-mn .

Now, substituting into (8.21), we obtain the Thue equation

2 - 12020’ - 8w’ + 4n” = 1. (8.23)
In Theorem 8.7 below we prove that this equation has only the solutions
+(m,n) = (0,1), «(1,-1), (3,1), (-1,3) . They lead respectively to
(u,v,w) = (1,0,0), (3,-2,-2), (19,30,6), (11,-10,-6) , which lead for (8.14)
to the solutions (x,*y) = (2,1), (10,31), (1274,45473), (114,1217) . Thus
this result completes the proof of theorem 8.6, provided the Thue equations
(8.22), (8.23) have as their only solutions the pairs (m,n) mentioned

above. We now proceed to prove this.
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THEOREM 8.7. (i). The Thue equation

4 3 2 2 4

X - 4.X7Y - 12:X7Y"  + 4. =1 (8.24)
has only the solutions *(X,Y) = (1,0)
(ii). The Thue equation

X4 - 12~X2-Y2 - 8~X-Y3 + a-Y4 =1 (8.25)

has only the solutions *(X,Y) (1,0), (1,-1), (1,3), (3,-1)

Proof. We use the notation and results of Sections 8.2 and 8.3.

Let the algebraic numbers 9 and ¢ be defined by

04 - 12-02 -89 +4 =0, wa - 4-¢3 - 12-w2 + 4 =0
Since ¢ = 2/9 , it follows that © and ¢ generate the same field K over
0 . In the notation of Section 8.2 we have n =4, s =4, t =0, and ¢ = 9

or £ = ¢ . Simple computations show that for ¢ =9, ¢ we can take

YO =1, C1 = 0.843 , 02 = 0.589 , Y1 =2, C3 = 6.645 ,
Y -3 1, C, =8.3374
2 - ’ /“_ - l‘+ - b 4 - .
In these computations we estimate Cl, C3, C4 from above and C2 from

below, making use of the following approximations for the conjugates of o

and ¢ :

o™ = _1.080 286 352 , o1 = —1.851 360 980 ,

5% = 3722 935 260 , o2 = 0.537 210 524 |

03 = 0334 111 716, o) = 5.986 021 747 ,

8 = 22,976 760 624 , »*) = —0.671 871 290
Now we work in the order R of K with Z-basis {1, 9, %~é2, %-63 }
(note that %‘62 is an algebraic integer). Note that

2 13
p=s-b+60-29 cR .

On the other hand, (8.24) and (8.25) are respectively equivalent to
NormK/Q(X—Y~0) =1 and NormK/Q(X—Y~w) = 1 , which means that if (X,Y) is
a solution of (8.24) or (8.25), then X - Y-® or X - Y-¢ , respectively, is

a unit of the order R . A system of fundamental units of R is given by
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€ = 1 +9, €, = 3+9, €, =

We do not prove this fact here. For a proof, see Tzanakis and de Weger [1987)

Section II1.2 and Appendix I.

Thus the solution of (8.24) and (8.25) 1is reduced to finding all

3 1 2 3
i . «
(al,az,aa) e Z such that the unit iel € €3

X - Y8 or X - Y-¢ , respectively. In the notation of Lemma 8.3 we have,

has the special shape

after some numerical computations, that we leave to the reader to check, that

-1

I ] = 1.210070... ,

min N[U—l] = 0.634950... , max N[U
I I I

(here, of course, I = { 1, 2, 3, 4 ) ). Therefore we can take in Lemma 8.4

C5 =1.211

Also,
C. = 6.38771x10% , y¥! = 3
6~ & RS

(The values of C5 and C6 are estimated from above.)

Now, relation (8.3) becomes in our case

ol 3 {0
A = log + z a, log - s (8.26)
(i) P | ()
0 _€(k) i=1 €
where £ =8 or ¢ . As mentioned in Section 2, once iO is fixed, we can
choose j, k arbitrarily. Thus we can choose
j =3, k=4 if io =1 or 2,
(8.27)
i=1, k=2 if iO =3 or 4
Therefore, for each € € ( ®, ¢ } we have four possibilities for A . For
each of these eight cases we have, as will be shown below,
38
C7 = 5.71x10 , C8 =6.17 ,
and therefore, by Lemma 8.5, if |Y] > 3 |, then for A = max |a,| we have
40 1=<i=<3
the upper bound C_, = 3.26x10 . As is easily checked, the only solutions of

9
either (8.24) or (8.25) with |Y| < 3 are those listed in the statement of
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the theorem. Therefore we may assume that |Y| > 3 , so that

A< 3.26x1040

Before we apply the reduction method of Section 3.8 we show that the

application of Lemma 2.4 yields the above constants C7, C8 . We apply this

result in the case of A given by (8.26). In this case, we compute the V. ('s

i
s appearing in A , as follows. If a; = |s§k)/5§J)|

for i =1, 2, 3 , then a; is a unit and hence ay (appearing in the

’

for the various o,

computation of h(ai) ) is equal to 1. Clearly, every conjugate of oy is in
absolute value less than
max (h)
BN

i min (h)| ’
1<h<a | €4

and Hi > 1 . Therefore, h(ai) < Hi , and we can take

K .
Vi = max [ log Hi’ |log|e§ )/eEJ)|| ]

(k)

Since the latter term equals the logarithm of either lei /EEJ)I or its

inverse, it follows that

Vi = log Hi
(iy) ; (i)

1f oy = 1€ 0 —§(J)[/|E 0 —§(k)[ , then all conjugates of oy are in
absolute value less than C3 . Therefore, h(ai) < (log aO)/d + log C3 R
where a, and d are as in the definition of h(a) for a = oy An upper
bound for a, can be computed as follows. Consider the algebraic numbers
Xip = %.(5(1)—g(h)) for i, he (1, ..., 4} with i = h . It can be
checked that the numbers X;p, are algebraic integers for £ =9 or ¢
Now, for each permutation o = (01020304) € Sa we consider the number
x(o) = )(0102/)(01‘73 (independent of 9, ), and the polynomial

Py = JI (X-x() ) .

UES4

Consider also the number

A = X .
l<i<h<sq D

Note that
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2 1 2 1
2= 55 N €0 = 5D
277 1=i<h<4 2
where D is the discriminant of the defining polynomial of £ , and

therefore A2 = 229 . On the other hand, the coefficients of P(X) are up to
the sign the elementary symmetric functions of x(o) for o € SA , and so
they are symmetrical expressions of the f(i)'s with rational coefficients.
This means that P(X) € Q[X] . On the other hand, by the definition of A ,
any coefficient of P(X) multiplied by A4 is a polynomial of the Xih’s
with coefficients in Z and therefore it is an algebraic integer. Combine

this with the fact that P(X) € Q[X] to see that 2292-P(X) € Z[X] . Hence,

since oy is a root of P(X) , its leading coefficient a is at most
2292 . To conclude, we have h(ai) < 2-(log 229)/d + log 03 and it is clear
that |log ail/d < log C3 . Since a, & Q@ we have d = 2 , so we can take

Vi = log 229 + log C3

Simple computations now show that

log H1 = 4.074586... , log H2 = 5.667432. ..
log H3 = 4.821584...

log C3 = 1.262065... if €& =19 ,

log C3 =1.893823... if & =9¢ ,

log 229 + log Cy < 7.327545...

Therefore we apply Lemma 2.4 (Waldschmidt) with n =4, D < 24, e(n) = 73,
(k) (k) (k) (i)
a, = il—— a, = 3 o, = "2 a £ ° _$<J>
L™ TGl T2 ] T3 LGy T4 (i) '
€ €3 €y ¢ 0 —§(k)
for € =9 or ¢ , and b1 =a; . +b2 =a,, b3 =a, ba =1, B=A,
Vl = log Hl , V2 = log H3 R V3 = V3 = log H2 , V4 = VQ = log 229 + log C3

Thus we find that
|A] > exp[-c7~(log A+ CS)J ,

with C7 = 5.71><1038 and 08 =6.17

We have now to apply the reduction process described in Section 3.7. In our
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situation we have to solve (8.9) with
4 n 4 40
K1 = CG = 6.38771x10 " , K2 - Eg = 1911 > 3.303 , K3 = 3.26x10
( K2 is estimated from below), and
A=2§+ ap py + a5k + aypy
where for § and the ui’s we have the following possibilities, in view of
(8.26) and (8.27):
fD_ 3 (2)_(3)
5§ =6 = log|>—=+—+~| or & =56, = log|>5—"+~
1 1 4 2 2 4 ’
(D_ @ fD_ @
< E(a) where & =9 or o , (8.28)
i .
By o= log 6(3) , for i=1, 2,3
i
or
3)_,. (1) 4y (1)
£ ""-¢ £ "-¢
§ =6 = log|>—75~ or § =256 = log|*——~—5~]
3 3 2 4 4 2
DD @ _ D
d 6(2) where &€ =9 or ¢ , (8.29)
i .
By o= log 5(1) , for i=1, 2, 3
i
Numerical details are given in Tzanakis and de Weger [1987]. We take
¢ = 10140 , and we work with the lattice with associated matrix
1 0 0
4 = 0 1 0
Note that in each of the four cases of (8.28) (resp. (8.29)) we have the same
lattice, Fl (resp. Fz ), say. In each case § = 0 , and we had no
numerical evidence that the ui's are QO-dependent. Therefore we worked as in

case (ii)

For each

each time

in Section 3.7.

of Section 8.4,

we have applied the integral version of the L3—a1gorithm, and

Ty
B, U, gt

we have computed the integral 3x3-matrices as defined

In our cases, the coordinates of the vectors of the reduced

bases (i.e. the elements of 8 ) turned out to have 46 to 48 digits, i.e. the
lengths of the reduced basis vectors are of the size of cé/3 , as expected.
In each of the eight cases we computed the coordinates S1» Sy 83 of
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with respect to the reduced basis bl’ b2, 23 of the lattice. From our

computations we found

jbo | > 3.21+7><10a6 in the case of lattice T, ,

1!

[§1| > 4.846x10A6 in the case of lattice F2 ,

[s.} > 0.029 in all 8 cases.

3
This means that in view of Lemma 3.5, in all cases iO =3 , and

46

(0 > 0.029-23.247x10"" > 4 708x10%%

Then the assumptions of Lemma 3.10 are fulfilled with n =3, vy =1, C = g

. B _ . 40 . : .
c = Kl, § = K2, XO = X1 = K3 , since Y27 K3 < 1.112x10 , which implies
1 140 4 40
A< §T§6§-log[10 -6.38771x10 " /3.26x10 ] < 72.8
It follows that A < 72. We repeat the procedure with K3 = 72 and
¢y = 1012 . We found from our computations
|§1| > 1.293X10a in the case of lattice Fl ,
Ihll > 1.092X104 in the case of lattice F2 R
”53” > 0.143 in all 8 cases.
This means that in view of Lemma 3.5, in all cases iO = 3, and

u(r,,x) > 0.143~§-1.092x10A > 7.807x10°

Then the assumptions of Lemma 3.10 are fulfilled, since /27-1(3 < 3.742x102 ,

which implies

A< ~10g[1012~6.38771x10A/72] < 10.5

1
3.303
It follows that A =< 10 . We enumerated all remaining possibilities, and

found no other solutions of (8.24) and (8.25) than mentioned in the theorem.

This completes the proof of Theorem 8.7, hence also that of Theorem 8.6. ]

The computations for the proof of Theorem 8.7 took 35 sec.

204



8.6. The Thue-Mahler equation, an outline.

Let F(X,Y) be as in Section 8.1. Let Pys -4 Pg be fixed distinct prime

numbers. The diophantine equation

s 0y
F(X,Y) =+ 1 p,
. i
i=1
in the variables X, Y € Z , 0y, -0, DO € NO , with (X,Y) =1 , is known

as a Thue-Mahler equation. It was proved by Mahler [1933] that this equation
has only finitely many solutions, and by Coates [1970] that they can, at
least in principle, be determined effectively, since an effectively
computable upper bound for the variables can be derived from the p-adic
theory of linear forms in logarithms. For the history of this equation we

refer to Shorey and Tijdeman {1986}, Chapter 7.

We believe that it is possible to solve Thue-Mahler equations, not only in
principle, but in practice. This can be done by reducing the above mentioned
upper bounds, wusing a combination of real and p-adic computational
diophantine approximation techniques, based on the L3—a1gorithm for reducing
bases of lattices (cf. Sections 3.7, 3.8, 3.11 and 3.12). The method can be
considered as a p-adic analogue of the method for solving Thue equations, on

which we report in the preceding sections.

Such an idea (but without using the L3—algorithm) was used by Agrawal,
Coates, Hunt and van der Poorten [1980], who determined all solutions of the

equation

%2 - x%y 4 xv? e ¥? - an®
This is one of the only two examples in the literature where a Thue-Mahler

equation has been solved completely, the other one being

X043y -2
which was solved by Tzanakis [1984] by a different method. Both examples are
of the simplest kind, in view of the fact that the cubic field @Q(®) , where
9 1is a root of F(x,1) = 0 , has only one fundamental unit, and there occurs
only one prime. Therefore it 1is sufficient to use two-dimensional real
continued fractions and one-dimensional p-adic continued fractions, instead
of the more complicated L3—a1gorithm (which was not yet available in 1980).

With the use of the L3—a1gorithm the method can in principle be extended to
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the general situation, where there are more than one fundamental units, and
more than one primes. In a forthcoming publication, Tzanakis and the present

author plan to give details and worked-out examples.
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