
Dual Discrete Logarithms

Benne de Weger

Department of Mathematics and Computer Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

E-mail: b.m.m.d.weger@tue.nl

version 1.0, October 15, 2007

To Henk van Tilborg, on the occasion of his 60th birthday.

1 Introduction

Recently Hung-Min Sun, Mu-En Wu, Wei-Chi

Ting and M. Jason Hinek [SWTH] introduced

Dual RSA as a variant of plain RSA, in which

two key pairs share the public and private ex-

ponents, but have di�erent moduli. Their main

motivation for this variant is to enable storage

savings for users who operate multiple key pairs

on the same machine. A similar motivation was

behind Twin RSA, introduced in 2005 by Arjen

Lenstra and the present author [LdW2], where

a construction was given for secure RSA moduli

that di�er by 2 only (�a la twin primes).

(As a side remark we notice that the idea for Twin

RSA emerged from the desire to construct pairs of se-

cure RSA moduli with a prescribed di�erence, related

to the construction of colliding public key certi�cates

based on hash collisions, see [LdW1].)

In [LdW1], [LdW2], corresponding \twin" prob-

lems for Discrete Logarithms were mentioned, i.e.

it was asked whether it would be feasible to con-

struct what might be called Twin Discrete Log-

arithm instances. An example is, for given prime

p and generator g of a subgroup of (Z/pZ)∗, to

�nd elements gx1 , gx2 that satisfy gx1 − gx2 = 1.

1

bdeweger
Stamp



Those problems might be quite nontrivial, and as far as we know no ideas for the e�cient

construction of Twin Discrete Logarithm instances have emerged, whereas the Twin RSA

problem was readily solved.

Similar to the Twin RSA case one might wonder about the Discrete Logarithm analogue of

Dual RSA, and that is exactly what is done in this note. It will be shown that in some sense

the situation is exactly the other way around compared to the Twin case, in the sense that

the construction of instances is somewhat cumbersome (though not infeasible, as shown in

[SWTH]) for Dual RSA, but quite easy for Dual Discrete Logarithms. This short note will

only introduce some easy concepts and obvious constructions, and will not deeply analyse

all sorts of variants and their security. Instead a list of open questions is given, to stimulate

research for anyone who, for whatever reason, might care to spend some time on this.

2 Dual Discrete Logarithms and Dual Di�e Hellman key pairs

In this section we discuss the generation of instances of Dual Di�e Hellman key pairs. To

generate Dual RSA instances, the paper [SWTH] �xes the public and private exponents d, e,

and asks for a pair of secure RSA moduli n1 = p1q1 and n2 = p2q2 such that the RSA key

equations ed ≡ 1 (mod φ(n1)) and ed ≡ 1 (mod φ(n2)) both hold.

In the Discrete Logarithm setting (we only look at the case of prime �elds Z/pZ), there may

be di�erent ways of �xing some parameters among Di�e Hellman key pair pairs. A completely

trivial and uninteresting way is to �x a generator g and a prime p, and take di�erent private

and public keys x1, x2, y1 ≡ gx1 , y2 ≡ gx2 (mod p). Another equally trivial way is to �x a

generator g and a private key x, and to �nd two random di�erent primes p1, p2 and public

keys y1 = gx (mod p1) and y2 = gx (mod p2). Or to �x a prime p and a private key x, and

to �nd two random generators g1, g2 and public keys y1 = gx
1 (mod p) and y2 = gx

2 (mod p).

Slightly less uninteresting is to �x a generator g and a public key y, and to �nd two random

di�erent primes p1, p2 and private keys x1, x2 such that y = gx1 (mod p1) and y = gx2

(mod p2). When �rst two primes are chosen, the problem of �nding the private keys is just

two instances of the Discrete Logarithm Problem, and thus can be supposed to be hard and

therefore uninteresting. When �rst two private keys x1, x2 is chosen, it's not clear how to

�nd in an e�cient way primes p1, p2 dividing gx1 − y and gx2 − y, unless trivial x1, x2 were

chosen. But maybe something clever can be found here.

The most close to Dual RSA seems to be the case where we �x the public and private keys x

and y (which we'll view as elements of Z), and ask for a pair of system parameter sets {p1, g1}

and {p2, g2}, where p1 and p2 are distinct primes of about the same magnitude, such that x

and y form a Di�e Hellman key pair in both settings, i.e. the following Di�e Hellman key

equations hold simultaneously:{
gx

1 ≡ y (mod p1),

gx
2 ≡ y (mod p2).

Clearly, for a user who operates multiple Di�e Hellman key pairs with di�erent system

2



parameters on the same machine, such an instance of Dual Di�e Hellman key pairs enables

a saving of 50% in storing the private as well as the public keys.

The main question we address is how to e�ciently create instances of Dual Di�e Hellman

key pairs. One might wonder in the �rst place whether such instances exist at all, but as we

allow a lot of freedom in all the parameters p1, p2, g1, g2, it is readily seen that there should

be su�ciently many solutions. We only have to �nd them. Here is a baby example.

Let us take p1 = 3 646 060 591 and p2 = 4 186 435 763 as prime numbers, and g1 = 2 454 186 096

and g2 = 754 870 076 as generators. With x = 2 101 907 279 and y = 1 420 880 381 we now indeed

have

gx
1 = 2 454 186 0962 101 907 279 ≡ 1 420 880 381 = y (mod p1),

gx
2 = 754 870 0762 101 907 279 ≡ 1 420 880 381 = y (mod p2).

One easy construction is as follows. We start with random primes p1 and p2 with p1 < p2,

a random integer g1 with 2 ≤ g1 ≤ p1 − 2 as �rst generator, and a random integer x with

2 ≤ x ≤ p1 − 2 and gcd(x, p2 − 1) = 1, as private key. Then the public key is computed as

y = gx
1 (mod p1), where y is interpreted as an integer with 0 < y < p1 − 1. Next z = x−1

(mod p2 − 1) is computed, and now we can compute g2 = yz (mod p2).

A second construction, just as easy, is to start with random primes p1 and p2 with p1 < p2,

and random integers x and y with 2 ≤ x ≤ p1 − 1 and 2 ≤ y ≤ p1 − 2 and gcd(x, p1 − 1) =

gcd(x, p2 − 1) = 1, as private and public keys. Then the two generators are computed via

z1 = x−1 (mod p1 − 1), g1 = yz1 (mod p1) and z2 = x−1 (mod p2 − 1), g2 = yz2 (mod p2).

Interestingly, the second construction can be related to RSA encryption and decryption. If we

take n = p1p2 as RSA modulus and e = x−1 (mod φ(n)) as RSA public exponent, then the

solution of Chinese Remaindering g1 (mod p1) and g2 (mod p2) is just the RSA ciphertext

obtained by encrypting the public key y. Unfortunately it's totally unclear what the use of

this observation is.

It is interesting to note that our constructions have a lot of freedom built in, seemingly not

imposing any structure that could be used in a priori making the security of the constructed

Di�e Hellman key pairs questionable. We think that in this respect the constructions outlined

here have a more robust feel to them than the construction of Dual RSA instances proposed

in [SWTH], which does add a lot of additional structure (such as a rather big common divisor

of φ(n1) and φ(n2)).

The last case to be studied is that of �xing a prime p and a public key y, and looking for

generators g1, g2 and private keys x1, x2 such that{
g

x1
1 ≡ y (mod p),

g
x2
2 ≡ y (mod p).

Clearly this cannot be done by �rst generating random generators (unless one can solve

Discrete Logarithms), but it should be done by �rst generating the private keys, and then

the generators by extracting the roots as in the construction described above. We leave

3



further details of this case to the reader.

3 Open questions

Of course the �rst question to ask is about the security of Dual Di�e Hellman key pairs. We

could formulate the Dual Discrete Logarithm Problem, or DuDL Problem, as follows:

The DuDL Problem

Given primes p1, p2 and generators g1, g2 and a positive integer y < min{p1, p2},

�nd the positive integer x < min{p1, p2} (if it exists) such that simultaneously

gx
1 ≡ y (mod p1) and g

x
2 ≡ y (mod p2).

Another version is to leave y out of the problem.

The Second DuDL Problem

Given primes p1, p2 and generators g1, g2,

�nd a positive integer x < min{p1, p2} (if it exists) such that

gx
1 (mod p1) and g

x
2 (mod p2), seen as positive integers < min{p1, p2}, are equal.

Clearly, if one can solve the Discrete Logarithm Problem (for any of the primes p1, p2), then

one can solve the DuDL Problem, and if one can solve the DuDL Problem and indeed a

solution is found, then one can solve the Second DuDL Problem.

One gets the feeling that the DuDL Problem

should be essentially easier than the Discrete Log-

arithm Problem, as twice as much information

is given away. Can this be exploited, e.g. in a

Pollard-ρ-type method, to get a better running

time than the square root of the prime size? Is

there reason to believe that, say, the DuDL Prob-

lem may allow a fourth root Pollard-ρ attack?

And what about the subexponential methods:

can they take advantage of the additional infor-

mation?

And what about the di�culty of the Second

DuDL Problem?

What about constructions for special cases of

Dual Di�e Hellman key pairs, such as g1 = g2?

Do such instances exist at all, and if yes, can one

�nd some?

Then of course the question comes up about

DuDL in other Discrete Log settings, such as �-

nite �elds of characteristic 2, subgroups of Z/pZ
with large cofactors, and (hyper)elliptic curves.

Let us describe the case of elliptic curves.

One variant that comes to mind is the following. Let E1, E2 be two elliptic curves over prime

4



�elds Fp1
,Fp2

respectively, being nice groups of appropriate sizes and without any special

structure that might be exploited by a ECDL solver. Suppose that we know the orders of the

full Elliptic Curve groups. Then the second construction given above translates as follows:

�rst �nd random points Q1, Q2 that share their x-coordinates (that's easy), and generate a

random private ECDH key k ∈ Z of the proper bitsize, that is coprime to the group orders.

Then compute the inverses of k modulo the group orders, and thus we can easily �nd base

points P1, P2 such that the corresponding public ECDH keys are Q1 = [k]P1 and Q2 = [k]P2.

By the point compression technique this would again imply an almost 50% saving in storing

both the private and public keys.

Finally an interesting open question is: is all this really useful? Are there any nice applica-

tions, other than the somewhat uninteresting storage saving?

Acknowledgements

The author thanks Arjen Lenstra for comments on this note, and

the Dutch Railways for kindly providing the mobile o�ce space in

which most of this note was devised and written.

Cartoons by Charles M. Schulz, c United Feature Syndicate, Inc.

Much more importantly, the author is very grateful to Henk

van Tilborg for creating a wonderful working enviroment and

atmosphere in the Eindhoven crypto group.

The picture above shows Henk as he looked at least 10 years ago.

References

[LdW1] A.K. Lenstra and B.M.M. de Weger, \On the possibility of constructing meaningful

hash collisions for public keys", in C. Boyd and J.M. Gonzalez Nieto (Eds.), ACISP

2005, LNCS 3574, pp. 267-279, 2005.

[LdW2] Arjen K. Lenstra and Benjamin M.M. de Weger, \Twin RSA", in E. Dawson and S.

Vaudenay (Eds.), MyCrypt 2005, LNCS 3715, pp. 222-228, 2005.

[SWTH] Hung-Min Sun, Mu-En Wu, Wei-Chi Ting, and M. Jason Hinek, \Dual RSA and its

Security Analysis", IEEE Transactions on Information Theory 53 [2007], 2922{2933.

5


