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The 3n + 1 process

Take a natural number.

* Ifitis even, then divide it by 2.

* Ifitis odd, then multiply it by 3 and add 1.
Iterate this, until you're tired.
1-4—-52—-51—-4—-2—1—...(I'mtired already)
2 — (seen thatone)... — 1
3—+10—+5—-+16—+8 <4 —(seenthatone)... — 1
4 — (seen thatone)... — 1
5 — (seen thatone) ... — 1
6 — 3 — (seen thatone)... —» 1
7 — 22— 11 —>34—>17—>52—>26—>13—>40—>20—>10(seenthatone)...—>1 \!e
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The 3n + 1 function

After an odd number always an even number appears, so always a division by 2
follows. Those two steps we take together as one step.

The 3n + 1 process iterates T

Example:
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The 3n + 1 Conjecture

The 3n + 1 Conjecture is:

More formal:

The cycle 1 < 2 is called the trivial cycle.
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Definitions

For n € N the sequence n — T(n) — T?(n) — ... is called its orbit.

If for some k,n € N it happens that T¥(n) = n

then (n, T(n),T?(n),..., T (n)) is called a cycle.

E.g. the trivial cycle is denoted by (1, 2) (or (2,1)).

If an orbit contains a cycle then it ends there, and the orbit is called convergent.
An orbit that is not convergent is called divergent.

A divergent orbit is unbounded.

Some convergent orbits seem divergent for a long time:

27 - 41 - 62 — 31 —-47 — 71 — 107 — 161 — 242 — 121 — 182 — 91 — 137 — 206 — 103 — 155 —
233 — 350 —+ 175 — 263 — 395 — 593 — 890 — 445 — 668 — 334 — 167 — 251 — 377 — 566 — 283 —
425 — 638 — 319 — 479 — 719 — 1079 — 1619 — 2429 — 3644 — 1822 — 911 — 1367 — 2051 —
3077 — 4616 — 2308 — 1154 — 577 — 866 — 433 — 650 — 325 — 488 — 244 — 122 — 61 —>92—>46—>'
23—+35—+53—-+80—+40—+20—-10—-5—-8—-4—-251

Partial conjectures

The 3n + 1 Conjecture splits up in two independent conjectures:

The Cycle Conjecture:
The trivial cycle is the only cycle for the 3n + 1 function.

The Convergence Conjecture:
There are no divergent orbits for the 3n + 1 function.
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History

Lothar Collatz (1910-1990, Hamburg) said he invented it around 1930.
In 1950 at the ICM in Cambridge (Mass.) he discussed it with some coIIeagues

In the 60s first papers appear on variants (a.o. a variant described by poet
Raymond Queneau, related to rhyme schemes in 12th century poetry).

In 1971 the 3n + 1 problem of (dis)proving the conjecture appears in print.
Martin Gardner writes about it in 1972, and then it goes viral.

It is known by many names: Collatz Conjecture, Syracuse problem, problem of
Hasse, of Kakutani, of Coxeter, of Ulam, hailstone number problem, etc.

The 60s: 8 papers, the 70s: 34 papers, the 80s: 52 papers, the 90s: 103 papers,
the 00s: 134 papers.
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Survey Literature

* Jeffrey C. Lagarias (ed.): The Ultimate Challenge: The 3x + 1 Problem, Am.
Math. Soc., 2010 (a collection of important papers)

* Jeffrey C. Lagarias, “The 3x + 1 problem and its generalizations”, Am. Math.
Monthly 92 [1985], 3-23 (detailed history until 1985)

* Jeffrey C. Lagarias, “The 3x + 1 problem: an annotated bibliography
(1963-1999)", arxiv.org. (short summaries of all papers until 2000)

* Jeffrey C. Lagarias, “The 3x + 1 problem: an annotated bibliography II
(2000-2009)", arxiv.org. (short summaries of all papers in 2000-2009)
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Why the 3n + 1 Conjecture may be true

Arguments / heuristics: Reformulations:
* Experimental * Graphs
* Probabilistic * Modular and De Bruijn graphs
* Logic / Complexity theoretic * Infinite matrices (operators)
* Diophantine * Eigenspaces
* Dynamical systems / ergodic * Functional equations

Terence Tao
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The 3n + 1 graph ®
®
The 3n + 1 Conjecture is equivalent to: @ |
® |
The 3n + 1 Graph is connected, i.e. has ex- &
actly one connected component. &
This is a reformulation that is not very infor-
mative on its own. |
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Graphs for similar functions: 3n — 1
The 3n — 1 function:

Ty 1(n) = n/2 if nis even,
> @En—1)/2 ifnis odd.

Equivalent to 3n + 1 on the negative in-
tegers:

T3-1(n) = —=T(-n)

There are (conjectured only) 3 cycles,
and (conjectured) no divergent orbits

This graph is not connected, it has (at
least) 3 connected components.
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Graphs for similar functions: 5n + 1

The 5n + 1 function: bbbbbd &o
n/2 if nis even Lo e e o

= ’ * ?

Ts1() {(5n+ 1)/2 ifnis odd. 9 ¢

There are (conjectured only) 3 cycles,
but also (conjectured) infinitely many di-
vergent orbits

-@-& OB
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Graphs for similar functions: 3n + 3
The 3n + 3 function:

Taa(n) = n/2 if nis even,
> (3n +3)/2 ifnis odd.

The subgraph of all multiples of 3 is iso-
morphic to the 3n + 1 graph

This graph is again conjectured to be
connected (all orbits end in the trivial cy-
cle)
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Graphs for similar functions: rational 3n + 1

T(n) but now for rational n in lowest terms with
odd denominator defined by

T(n) = n/2 if n has even numerator,
~ | (3n+1)/2 ifnhas odd numerator.

(even denominator is uninteresting)

In fact this is the combined 3n + q graph for all
odd g. Every ¢ with odd b has two predecessors:
L age =t

b 3b

There are (conjectured) no divergent orbits,
and there are infinitely many convergent orbits,

which allow a very nice description

13

TU/e



All cycles in the rational 3n + 1 graph

A convergent orbit ends in a cycle, a cycle has an even-odd structure:
length 1: 2 possibilities: e, o
length 2: 1 possibility: eo
length 3: 2 possibilities: eeo, eoo
length 4: 3 possibilities: eeeo, eeoo, eooo
length 5: 6 possibilities.: eeeeo, eeeoo, eeoeo, ee000, €0€00, €0000

etcetera, the so called Lyndon words.

For every Lyndon word an equation for the cycle can be derived, which has
exactly one rational solution:

. 1 1 .
e.g. foreoowe derivex 5 —x 3 Zx+ - 2 9% +2 — x| sox=—_10, this yields

the known cycle —10 — —52—> —74—> —120 8 4
and from the cycle the complete connected component can easily be computed
backwards
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Conway'’s “amusical permutation”

(3n)/2 if n is even,
Un)=<(3Bn+1)/4 ifn=1 (mod 4), now again on the integers
(3n—1)/4 ifn= -1 (mod 4)

Seems to be older than the 3n + 1 function T itself (says Collatz).
This function is a permutation on N. So U~ exists:

(2n)/3 ifn=0 (mod 3),
U'(n)=4{(4n-1)/3 ifn=1 (mod 3),
(4n+1)/3 ifn=-1 (mod 3)

This gives a linear graph: every node has one predecessor and one successor.
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The ‘amusical graph’
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There are probably no other cycles, and infinitely many divergent connected
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Experimental

Eric Roosendaal, Tomas Oliveira e Silva, David Barina, and others:
The 3n + 1 Conjecture holds for all n < 259 ~ 5.9 x 10%9,

This is an impressive achievement. Distributed computations are ongoing. It's
intelligent brute force computing, with e.g.

* stop as soon as TX(n) < n,
* performing multiple steps at once with a time-memory tradeoff.

See Eric Roosendaal's website http://www.ericr.nl/wondrous/.
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http://www.ericr.nl/wondrous/

Probabilistic

The T function with inputs n from a uniformly random even/odd distribution
produces also uniformly random even/odd distributed outputs T(n).

SoT(n) ~ %n with probability 1/2, and T(n) = $n with probability 1/2, so
k/2 ;.\ k/2 k
T (n) ~ (%) (%) n= <%\/§> n.

Note that 5/3 ~ 0.866 < 1. After k ~ 6.95 log n steps one expects to hit 1.
Similarly for 3n + g with any q, as well as for rational 3n + 1.
More advanced stochastic models predict things like:

* extreme high orbits reach highest point ~ n? after ~ 7.65 log n steps, and
then need another ~ 13.9log n steps to reach 1,

* extreme long orbits will reach length =~ 41.7 log n.
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Experiment for 3n + 1
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Experiment for 5n + 1

Argument also works for 5n + 1: factor now is 3v/5 ~ 1.12,
so divergence now is most probable.
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Experiment for the amusical permutation

For the amusical permutation the factor is %\/i ~ 1.061 forwards, and
%3/1 ~ 1.058 afterwards, so divergence is highly probable in both directions.

L L L L L L L L L
—200000 —150000 — 100000 50000 o 50000 100 000 150000 200 000 250000
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Logic en Complexity theoretic

Conway: there exists a generalisation of the 3n + 1 function whose iteration
simulates a universal computer (Turing machine).

For this function the decision problem “does an orbit reach a random power of
2" computationally undecidable.

In his paper “On unsettleable arithmetical problems” (Am. Math. Monthly 120
[March 2013], 192-198) John Conway says:

“It is likely that some simple Collatzian problems (possibly even the 3n + 1 prob-
lem itself) will remain forever unsettleable.”

I say: don't let that discourage you...

22 The 3n+ 1 Conjecture TU/e

Diophantine

An m-cycle is a cycle for the 3n + 1 function with m local maxima and m local
minima.

Ray Steiner proved (in 1977) that the trivial cycle is the only 1-cycle. The
argument roughly is as follows:

If, starting from n, you first do k upward (odd) steps (T(n) = (3n+1)/2) and then
arrive at an even number, then n = a2¥ — 1 with odd a, and TX(n) = a3% — 1.
Then follow ¢ downward (even) steps (T(n) = n/2), and you return at n, so

a3k -1 =2¢ (012"— 1), SO

20 — 1

0 < 2kt _ 3k — < 2!
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Diophantine (continued)

koo 1
The “Theory of Linear Forms in Logarithms of Algberaic Numbers” is a branch
of Number Theory that says (a.0.) that powers of integers cannot be close to

each other. In particular (Alan Baker (1966), Georges Rhin (1987)):

Take logarithms: 0 < 1 —

|(k + £)log 2 — klog 3| > k=133,

Comparing the bounds gives k < 85. Steiner’s upper bound was k < 1029,
With computing the “continued fraction” of % to high precision, a reduced
upper bound can be found.
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Diophantine (continued)

This argument by Steiner can be generalised.
John Simons (Groningen) proved in 2004 that 2-cycles do not exist.

Simons & dW then proved in 2005-2022, based on the lower bound 2°° for a
starting value:

m-cycles with 2 < m < 77 do not exist.
If a nontrivial cycle exists, then its length exceeds 10'°.

Christian Hercher (2021) claims to have proved that there are no m-cycles with
m < 90 but I have not checked his proof (yet).
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Modular 3n + 1 graphs and De Bruijn graphs

The modular 3n + 1 graph with modulus m consists of all possible arrows from
n (mod m) to T(n) (mod m).

(Laarhoven-dW 2013) These graphs turn out to have a beautiful structure when
m = 2k: then they are “De Bruijn graphs” of order k (after our own N.G. de
az...ak@

Bruijn), coming from the bit-shift operator a,a, ---ay — { :
az...akl
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Conjugation

For every pn + q function (p, g odd, coprime) the modular graph with modulus
2¥ is the same kth order De Bruijn graph. Only the labeling of the nodes is
different for each p, g.

This labeling is the conjugation map ®,:

&, :n — aq05 - -4, where q; is the parity (even or odd) of 71 (n).

The pn + g graph modulo 2 itself is independent of p, g, but the conjugation
map does depend on p, g.
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The infinite De Bruijn graph

For k — oo one gets the infinite De Bruijn graph B(Z;), based on the bit-shift
shift operator on infinite bit sequences: a,a0,03--- — a,a3 - -.

This graph contains all possible cycles (from the Lyndon words), each node
decorated with a full binary tree, and uncountably many connected
components without cycle, each being a binary tree extended infinitely to both
sides.

This graph is a real monstrosity, loaded with structure. Hiding in there are all
possible pn + g-graphs, identified by their (weird) conjugacy maps.

IO :—’”—\\ / T B(Za) :——"—\\

AZ:FWQ) T C™(Zy) \ / ®C(ZNQ) T B(Zx\Q) \

[ 70w |2 ) [0~ | 27X
C*(@Z2NQ) | MZNQ) CZ\Q o BZNQ)  WCMZNQ) eC(Z\Q)

A i A — A 3 A

3 C(N) . @C(N)

i e TU/e
Co(N) Cdiv () PC(N) ®C (1)

Modular 3n + 1 graphs for odd moduli m coprime to 3

Structure for odd moduli is more intricate:

following always the path n — % (mod m)
gives a set of cycles, following always the path
n— 2 (mod m) gives a different set of cycles,

2
e.g. form = 5: red arrows: n — 3n2+ 1

(mod 5),

blue arrows: n — g (mod 5)
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Modular 3n + 1 graphs for odd moduli m coprime to 3

10000

Adjacency matrix A = (a;;) of a graph:
0n,7(ny = Number of arrows from n to T(n)

e.g. for the 3n + 1 graph (mod 5):

8000

7000

6000

Log2 of the absolute value of the determinant

1 0 0 1 O 2000
4000
O 01 1 O0 3000
O 2 O O O 2000
.

1 0 O O 1 1000 gp, = ..3,...“:.. % ot e, :"'o 0o® =

Rselncitadiciotibivediaiitisiudadtotdiioidy
0

O 0 1 0 1 0 50000 100000 150000 200000 250000 300000

Primes

Achilleas Karras experimentally found wild results for determinants of such
matrices

we found a formula explaining this (ongoing research, Karras & dW)
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Infinite matrices

The 3n + 1 graph is infinite, so it has an infinite adjacency matrix A = (a;;) with
an7ny = 1foralln €N, and g;; = 0 otherwise. This graph is very structured:
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Powers of adjacency matrices

The kth power of A describes paths of
length k. For growing k only the first two
columns seem to survive:

— —
¢ e

—_——
—_——

2k+1
A

LY NP N W W . . .

_— AN .

The 3n+ 1 Conjecture is equivalent to the statement that for k — oo the matrices
A%k and A%k+1 converge to resp. (ag, a4,0,0,...) and (a;,ap,0,0, .. .),
whereag +aqy = (1,1,1..)7.

32  The3n+ 1 Conjecture TU/e

Eigenspaces

Note that Aag = @, and Aa, = ag, SO 0g + @, is an eigenvector for the eigenvalue
1, and ap — 0, is an eigenvector for the eigenvalue —1.

In general for such graphs: a cycle of length k is associated to k eigenvectors,
for the kth roots of unity as eigenvalues.

One of those eigenvalues is 1. Indeed, each connected component, convergent
or divergent, corresponds to an eigenvector for the eigenvalue 1: the vector
with 1s on the connected component’s elements.

The complete spectra of Aand AT have been described (dW, ongoing work).

(Engl, 1982) The dimension of the full eigenspace of A for the eigenvalue 1 equals
the number of connected components of the graph.

So the 3n + 1 Conjecture is equivalent with the statement that the eigenspace
for the eigenvalue 1 of the matrix A is one-dimensional.



Functional equations
Berg and Meinardus (1994) consider the power series
f(z)=ep+ez+e2>+...+ep2" +...,

where we demand that e, = ey, for all n. What can we say about f? Define

fk(z) = Ze3n+k23n+k for k = 071727 SOf :fO +f1 +f2
n=0

Letw = e*™/3. Then fo(wz) =fo(2), fi(w2) =wfi(2), fa(w2)=fa(2).
And we find  f>(2) = § (f(2) + wf(wz) + ©f (w2)).
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Functional equations (continued)

On the other hand

(©.@) o0 0o 00
fl@) = Z ez’ + Z exn12°" = Z ern2”" + Z erani1)22"
n=0 n=0 n=0 n=0

(0.} 0
= Y e+ esn 022" = () + 27 P(2P),
n=0 n=0

So f satisfies the functional equation

3z (f(23) — f(2°)) = f(2?) + wf(wZ?) + wf (@z?)
where w = —3 + iv/3.
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Functional equations (continued)

This functional equation

32 (f(2°) — f(2°)) = f(2%) + wf (wz?) + &f (@)

- : : z
is linear. Two obvious solutions are f(z) = 1 and f(z) = T3 =7 +224+22+...

Again there is a direct correspondence between independent solutions of this
functional equation and the connected components of the 3n + 1 graph.

The 3n+1 Conjecture is equivalent to the statement that this functional equation
has a two-dimensional solution space in power series.
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Functional equations (continued)

With e, = —er(,) we find a more interesting functional equation:

3z (~f(2%) - f(2°) = f(2°) + wf (wz?) + wf (wz?)

with as solution f(z2) =z - 27> - 22+ 74 + 22+ 75— 7" — .. .. Here e, = +1 indicates
an even or odd number of steps from n to 1.
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The amusical functional equation

Doing the same for Conway’s amusical permutation gives (with i = v/—1)
2z (2f (%) — f(2°) — f(=2°)) =
= (22 +1) (f(Z°) - f(=2°)) — (22 = 1) (f(iz®) — f(~i2%))

The four cycles in the graph are finite connected components, implying that
this functional equation allows polynomial solutions (next to f(z) = 1):
f)=z f@)=22+2, f(2)=72*+22+2°+7"+2°and

Probably there are no more independent polynomial solutions. And there are
(probably infinitely many) power series solutions, such as
I ey R R o AL R AL A S
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Terence Tao

Study behaviour of “almost all” orbits, i.e. disregard “outliers”

Terras (1976): For “almost all” n there exists a k such that T¥(n) < n.
(“almost all” means: with “density” 1, for some useful definition of “density”)

Tao (2019): For “almost all” n there exists a k such that T¢(n) < f(n), for any
function f that grows to oo, e.g. f(n) = log log log log n.

Terence Tao, Almost all orbits of the Collatz map attain almost bounded values,
https://arxiv.org/abs/1909.03562

Pretty difficult paper, too hard for me, uses a.o. transcendence theory and
ergodic theory.
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Conclusion

Paul Erdés: “Mathematics is not yet ripe enough for such questions.”

Ionica Smeets: “The 3n + 1 Conjecture is an “embarrassing problem”: easily
stated, but it is hard to explain to laymen why us brilliant mathematicians can’t
solve it."

Terence Tao: “The Collatz Conjecture is one of the most “dangerous” conjectures
known — notorious for absorbing massive amounts of time from both profes-
sional and amateur mathematicians.”

BdW: Exploring the relations with many different areas of mathematics gives
some insight in why the problem is difficult, and some hope that in one of those
areas something of interest is hiding.
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http://xkcd.com/710/

Questions?

THE COULATZ CONTECTORE STATES THAT IF YU
PICK. A NUMBER, AND IF ITSEVEN DIVIDE 1T &Y
Two AND |F 1T5 00D MULTIFLY IT 3 THREE AND
ADD ONE, AND YoU REPEAT THIS PROCEDURE LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WILL SToP

N AN .
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